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FOREWORD 

This is the third of three volumes of the final report prepared by the Research 
Triangle Institute , Durham, North Carolina under NASA contract NASw-905, "Development 

of Reliability Methodology for Systems Engineering". 
under the technical direction of the Office of Reliability and Quality Assurance, 
NASA Headquarters with Mr. John E. Condon, Director, as technical contract monitor. 

This work was administered 

The work described in this report was conducted by M. R. Leadbetter and J. D. 
The emphasis of this work has been to develop mathematical methods for the Cryer. 

analysis of stochastic data, from a reliability standpoint. 
developed extends the theory available from work done under a previous NASA contract 

(NASw-334). While the results obtained are theoretical in nature, the requirements 
for practical application have been kept constantly in mind. In particular, simple 
asymptotic approximations have been given for certain important results which would 
otherwise lead to difficult computational problems. 

The methodology thus 

The contents of this report have also been submitted as Mr. Cryer's disserta- 
tion in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy in Statistics at the University of North Carolina. 
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PREFACE 

The objective of this contract was to develop reliability methodology which 
relates to various techniques which can be applied in designing reliabile systems and 
to extend the methodology by the development and demonstration of new techniques. It 

was important to have available a system on which to test and demonstrate the results. 

A complex static inverter was chosen for this purpose and served this role well. 
The three major areas of effort in the program are defined by the titles of the 

final report volumes listed as follows: 

Vol. I. Methodology: Analysis Techniques and Procedures 
Vol. 11. Application: Design Reliability Analysis of a 250 Volt-Ampere 

Static Inverter 
Vol. 111. Theoretical Investigations: An Approach to a Class of Reliability 

Problems 

The purpose of Vol. I is to describe the mathematical techniques which are 
available for performing the reliability analysis of equipment life and performance. 
Appropriate technique selection, coupled with proper coordination of efforts during 
design, are essential for engineering reliability into equipment. Vol. I1 considers 
the practical application of reliability analysis to circuit design and demonstrates 
improvements in the identification and solution of problems using the techniques 
described in Vol. I. This employs the static inverter as an example. Vol. I11 
describes fundamental studies in stochastic processes related to reliability. 

Other technical reports issued under this contract effort are as follows: 

1. "On Certain Functionah of Normal Processes,'' Technical Report No. 1, 
September 1964. 

2. "Functional Description of a 250 Volt -Ampere Static Inverter, Technical 
Report No. 2, December 1964. 

3. "The Variance of the Number of Zeros of Stationary Notma1 Processes," 

Technical Report No. 3, March 1965. 

4. 
5. 

"Problems in Probability," Technical Report NO. 4, October 1965. 
"Reliability Analysis of Timing Channel Circuits in a Static Inverter, 

Technical Report No. 5, December 1965. 
6. "Reliability Analysis of Timing Channel Circuits in a Static Inverter," 

Technical Report No. 6, January 1966. 
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ABSTRACT 

This report is concerned with certain random quantities derived from a con- 
tinuous time stochastic process X(t). 
number of crossings of certain barriers by the sample functions of X(t) and other 
closely ralated random variables. Such quantities are of interest in reliability 
theory both in their own right as performance measures and because they can pro- 
vide bounds on certain probabilities. 

Particular interest is centered on the 

The basic definitions and fundamental relations for crossings are given 
first. It is noted that the actual distribution of the number of crossings is 
obtainable in only very special cases. 
rived when the process is the so-called random cosine wave. 

difficulty in deriving the distributions involved, certain moments are considered. 
Assuming that X(t) is a non-stationary normal process, a formula for the mean 
number of crossings of a (continuously differentiable) curve is obtained under 

essentially minimal conditions. 
ber of upcrossings of a level by a stationary normal process is derived next. 
It is shown by an example that the sufficient conditions given for the finiteness 
of this moment are also very close to being necessary. 
this connection include a formula for the covariance between the number of up- 
crossings in one interval and the number in another interval. 

In particular, this distribution is de- 
In view of the 

An expression for the second moment of the num- 

Incidental results in 

Also considered are certain random variables related to excursions outside 
of given barriers. The first two moments of these variables are given and it is 
noted that Chebyshev-type bounds on probabilities of interest can be obtained 
from these moments. 
outside two-sided barriers. 

Some discussion is devoted to crossings and excursions 
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CfIAPTER I 

INTRODUCTION 

We s h a l l  be concerned throughout with a s tochas t i c  process X ( t )  having a 

continuous time parameter t .  

crossings of c e r t a i n  b a r r i e r s  by the sample functions of X(t) and i n  other  c losely 

r e l a t ed  random variables .  The i n t e r e s t  i n  crossing problems came, i n i t i a l l y ,  

from e l e c t r i c a l  engineering applications,  e spec ia l ly  i n  radio propagation and 

communications theory. For example, the  s t a t i s t i c a l  propert ies  of the  number of 

zero crossings per u n i t  t i m e  of a voltage waveform provides knowledge necessary 

f o r  the design of c e r t a i n  FM signal  detectors .  Studies of fa t igue i n  s t ruc tures ,  

ana lys i s  of f l i g h t  test da ta  and guidance systems, and inves t iga t ions  i n t o  speech 

waveforms p r w i d e  f u r t h e r  applications of i n t e r e s t .  

I n  par t icu lar  we are i n t e r e s t e d  i n  the  number of 

Certain aspects of r e l i a b i l i t y  theory may a l s o  be approached through cross- 

ing problems. 

physical  mechanism subject  t o  random dis turbing influences,  i t  is  sometimes con- 

venient t o  consider "performance measures" which a re  based on the cha rac t e r i s t i c s  

of a s tochas t i c  process associated with the system. For example suppose X ( t )  de- 

notes an output of the system and fo r  good performance it i s  desirable  t h a t  X ( t )  

remain below t h e  l e v e l  a during the operational period of the system, t E ( O , t o ) .  

Then we would l i k e  t o  evaluate P{X(t) < a, t E (0 , t  ) } .  

When one i s  concerned with the  qua l i t y  of performance of a complex 

I n  terms of crossings 
0 

t h i s  i s  the  same as P{X(O) < a and X ( t )  has no crossings of a f o r  t E: (0 , t  ) } .  

The mean number of crossings of the l e v e l  a during (0, t  ) would a l s o  be of i n t e r -  

est as a performance measure; the smaller the  mean the  b e t t e r  the performance 

from t h i s  point of view. 

0 

0 
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It is also easy to see that crossings are closely related to certain first- 

passage problems. 

For processes with continuous sample functions T 

Let Ta denote the first time after t = 0 at which X(t) = a. 

a is a random variable and a first- 

passage problem consists of 

P(Ta > TI 

First-passage problems 

stationary normal processes 

Slepian (1962) and Mehr and 

finding the distribution of T . We have the relation a 

= PCno crossing of a for t E (0,~)) . 
are extremely difficult in general and even for 

have only been solved for a few special cases. 

McFadden (1965) and the references contained there- 

(See 

in.) We may however note also that 

PET, > TI = PE max X(t) < a) + PE min x(t) > a1 . 
( 0 , T )  (0,T) 

The asymptotic distribution of m a x  X(t) as T --3 OD has recently been obtained 
(0,7) 

by Crame'r (1965, 1966) for a stationary normal process under weak conditions. 

Similarly in almost all cases the distribution of the number of crossings is 

not known. Thus our results will mainly be concerned with moments. However the 

moments are useful in their own right and indeed can be used to provide bounds and 

approximations to the probabilities discussed above. 

In Chapter I1 the basic definitions are given and some of the fundamental re- 

lations derived. An approximation to a process X(t) is described and shown to be 

useful in obtaining results concerning crossings. In the last section of Chapter I1 

the actual distribution of the number of upcrossings is derived for the very spec- 

ial case of a "random cosine wave." 

Chapter I11 is concerned w i t h  the mean nltmber of cume crossings by a general 

non-stationary normal process. A formula for the mean is given and corresponding 

results for upcrossings and downcrossings are noted. 

the mean number of crossings to be infinite are obtained and it is shown that the 

Conditions sufficient for 

conditions under which the formula for the mean is obtained are close to being 

necessary. Some examples are given. 
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The second moment of t h e  number of upcrossings of a l e v e l  by a s t a t iona ry  

normal process i s  found i n  Chapter IV. 

ent  i s  f i n i t e  and i t  i s  shown by example t h a t  a very s l i g h t  r e l axa t ion  of these 

conditions leads t o  an i n f i n i t e  second moment. Hence again the  s u f f i c i e n t  con- 

d i t ions  f o r  f in i teness  a r e  almost the necessary conditions. 

of the t o t a l  number of crossings i s  obtained from the corresponding r e s u l t  f o r  

upcrossings. Next the  covariance between the  number of upcrossings i n  one i n t e r -  

v a l  and the number i n  another in te rva l  i s  found. The remaining two sect ions give 

the  asymptotic form f o r  the variance of the  number of crossings i n  an i n t e r v a l  of 

length T as T -7 OD and some numerical r e s u l t s  which ind ica t e  t h a t  i n  many cases 

of p r a c t i c a l  i n t e r e s t  the asymptotic form i s  approached r a t h e r  rapidly.  

Chapter V deals  with c e r t a i n  random variabes r e l a t ed  t o  excursions outside 

Conditions a r e  given such t h a t  t h i s  mom- 

I n  4.3 the variance 

of a curve a ( t ) .  

shown how they can give Chebyshev-type bounds on p robab i l i t i e s  of i n t e r e s t .  

asymptotic formulae and numerical calculations end t h i s  chapter. 

The mean and variance of the var iables  a r e  derived and it is 

Some 

I n  Chapter V I  we i nd ica t e  how the r e s u l t s  of the  earlier chapters can be ex- 

!&at is ,  we consider the t o t a l  number of crossings tended t o  two-sided b a r r i e r s .  

of the t w o  levels  a and b and excursions outs ide such boundaries. 

Final ly ,  i n  most cases the conditions assumed are s u f f i c i e n t  t o  ensure the 

existence of a separable vers ion of t h e  process under consideration. 

any case,  s e p a r a b i l i t y  w i l l  be assumed throughout without fur ther  comment. 

However, i n  
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2.1 Crossings 

In this and the following two chapters we w i l l  discuss certain properties of 

"crossings" of levels or curves by the sample functions of a stochastic process. 

Although the meanings of such works as "crossings11 or llupcrossings'' are intuitively 

clear they must of course be defined precisely within a mathematical framework. In 

particular it might seem reasonable to define an upcrossing in terms of the process 

value and the sign of its derivative. However, to obtain results under minimal con- 

ditions it is sometimes necessary to avoid assuming that the process has (with 

probability one) a sample derivative. 

include those given by Volkonski (19601, Ylvisaker (1965) and Leadbetter (1966a). 

Thus we make the following definitions which 

Suppose x(t) is a (non-random) continuous real function for t E [0,1] with the 

property that x(k2-n) # 0 for k = 0,1, ..., 2",n = 1,2 ,... 
be a zero crossing of x(t) if for every E > 0 there are points t 

that to-E 5 tl 6 to <, t2 <, to + E: and x(t,)x(t,) < 0. 

a continuous function on [O,l] and a(k2-") # x(k2-"), x(t) is said to have a cross- 

i w  of a(t) at to if x(t)-a(t) has a zero crossing at to. 

not assume x(t ) = 0 at a zero crossing t 
0 0' 

continuity of the function x(t). 

positive or else strictly negative in some neighborhood of t 

have a zero crossing there. 

Then t ~ [ 0 , 1 ]  is said to 

in [0,1] such 
0 

t 1' 2 
More generally, if a(t) is 

Note that though we do 

nevertheless this follows from the 

For if x(to) # 0 it follows that x(t) is strictly 

and hence cannot 
0 

Clearly as our definition stands it does not include points of tangency 

(i.e. points where x(to) = 0 that are not crossings) to the axis (or the curve 
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. 

a(t)) as zero crossings. 

in many applications of crossings to random functions it can be shown that the set 

However, the definition is the most convenient one and 

of sample functions which are somewhere tangential to the axis (or curve) has 

zero probability of occurring. Hence quantities such as moments of the number 

of crossings are also the moments of the number of times the function (process) 

actually assumes the value. More will be said of this as needed. 

It will also be convenient to define two special kinds of crossings. The 

point t 

when to-6 <, t <, to and x(t) 2 0 when to 5 t <, to + 6. 
x(t) has a downcrossing at t 

to-6 5 t 5 to and x(t) 2 0 for to <, t 5 t 

is called an upcrossing ofx(t) if there exists 6 > 0 such that x(t) 2 0 
0 

Similarly the function 

if there exists 6 > 0 such that x(t) 2 0 for 
0 

+ 6. 
0 

The following rather intuitive Lemmas will be needed later. Similar results 

are used (without full proof) by Leadbetter (1966a). (see also Ylvisaker (1965)). 

Lemma 2.1.1: If x(t ).x(t2) < 0 then x(t) has a zero crossing between t and t2. 1 1 - 
Proof: 

an open interval in which x(t) has constant sign. 

intervals is an open covering of [0,1]. 

a finite subcover. 

by finite induction, x(t ) and x(t2) must have the same sign - a contradiction. 

Suppose this is not true; then every point of the interval [0,1] lies in 

The collection of all such 

By the Heine-Bore1 theorem there exists 

On overlapping intervals x(t) must have the same sign and thus, 

1 
Let N, NU, Nd denote, respectively, the number of crossings, upcrossings, 

and downcrossings of x(t) for t ~ [ 0 , 1 ] .  

are neither upcrossings nor downcrossings - consider x(t) = (t-to)sin(l/(t-to)) 

with t,~[O,l] and not of the form k2-". 

f ol lowing result. 

In general there may be crossings wbich 

If, however, N is finite we have the 

Lemma 2.1.2: If N < OD then N = Nu + Nd. - 
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Proof: L e t  t be a zero crossing of x( t ) .  Since N < a, there  i s  an  i n t e r v a l  

( t o -€ ,  t +E) which contains no other crossings.  

s i g n  i n  (to-€, t ) s ince  i f  i t  d id  there  would, by Le- 2.1.1, be another crossing 

i n  ( to-€ ,  t o ) .  

e i t h e r  an upcrossing o r  a downcrossing. 

0 

The funct ion x ( t )  cannot change 
0 

0 

Similar ly  x ( t )  has  constant s ign  on (t t +E) and thus to i s  
0' 0 

Lemma 2.1.3: 

upcrossing between t and t 

If N < a0 and x(t,) < 0 < x(t2)  where tl < t2, then x( t )  has  an  

2' 1 

Proof: 

be the  f i r s t  such crossing. 

downcrossing. 

and t 

crossing before t - a contradiction. Thus t i s  an upcrossing. 

By Lemma 2.1.1 a t  least one crossing occurs between tl and t2. Let to 

By Leuma 2.1.2 t i s  e i t h e r  an  upcrossing o r  a 

Then there  i s  a point between t 

0 

1 Suppose it i s  a downcrossing. 

where x ( t )  i s  s t r i c t l y  posi t ive and hence, by Lemma 2.1.1 there  i s  another 
0 

0 0 

- Lemma 2.1.4: I f  N < OD, then NU - Nd assumes only the  values O,& 1. 

+1 i f f  x(0) < 0 < x(1) 

-1 i f f  x(0)  > o >  x(1) 

0 otherwise 

Nu - Nd = 

Proof: 

two upcrossings (downcrossings). Thus the  upcrossings and downcrossings a l t e r n a t e  

and the leuma e a s i l y  folluws from t h i s  f ac t .  

Using Lenma 2.1.1 again we see t h a t  there  must be a crossing between any 

2.2 The Piecewise Linear Approximation. 

For any t ~ [ 0 , 1 ]  and any posi t ive in teger  n, we l e t  k = k ( t )  denote the  n 

unique in teger  such t h a t  k2-" 5 t < (Wl )  2-". 

t h e  piecewise l i n e a r  approximation t o  x ( t ) ,  as t h e  funct ion 

Then f o r  each n we define yn( t ) ,  

(2  * 2.1) yn(t)  = x(k2-") + 2"(t-k2'")[x((W1)2-") - x(k2-")] , 
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n 
t h a t  i s ,  yn(t)  = x(t)  f o r  t of t h e  form k2-" (k = 0,1,. . .2  ) and yn(t)  i s  l i n e a r  

between such points .  

Let N denote t h e  number of zero crossings by y (t) f o r  t ~ [ 0 , 1 ] .  Then the  n n 

following usefu l  lemmas can be obtained. 

Lemma 2.2.1: For each n we have N <, Nntl <, N. n - 
Proof: I f  y (t) has a zero crossing a t  t then there  i s  an in t ege r  k such t h a t  

k2-" < to < (lCt1)2-" and ~(k2 '~) -x( (H1)2 '*)  < 0. Thus by Lemma 2.1.1 x ( t )  has 

a zero crossing i n  (k2-", ( l~- t l )2 '~)  and thus Nn 2 N. Further x((2lc+l)2-"-') i s  

e i t h e r  pos i t ive  o r  negative so t h a t  y 

n 0 

( t )  a l s o  has  a zero crossing i n  ntl 

(k2-", ( l ~ + 1 ) 2 - ~ ) ~  i . e .  Nn <, NWl. 

- Lemma 2.2.2: N n t  N a s  n 0 0 .  

Proof: 

is a set of N d i s j o i n t  i n t e rva l s  each containing one of t h e  t 

be a typ ica l  such in t e rva l .  

I f  N i s  f i n i t e  l e t  tl,t2, ..., t be the  zero crossings of x ( t ) .  There N 

Le t  a < ti < b 

By the  d e f i n i t i o n  of zero crossing the re  exist two 

i '  

points  T ~ ,  T~ such t h a t  a < T~ < ti < 72 < b and X(T  ) * x ( 7  ) < 0. 

continuous there  are neighborhoods (c ,d) ,  ( e , f )  of 7 7 such t h a t  x ( . )  i s  of 

conts tan t  s ign  on each one. 

is dense i n  [0,1] and thus there  are in tegers  n, 

such t h a t  c < k 2-" < d and e < k22-" < f .  

and y ( t )  has a zero crossing i n  (a,b) a l so .  

t .  y ie lds  l i m  N = N. 

Since x ( - )  i s  1 2 

1' 2 

Now the set of points  {k2-": k=0,1,...2n, n=1,2,...) 

k2 with 0 2 klyk2 2 2" kl 

Therefore yn(k12-n)-yn(k22-n) < 0 1 

Repeating t h i s  argument f o r  each n 

1 n 
-,OD 

Now suppose N i s  i n f i n i t e .  Let M be an a r b i t r a r y  positve in t ege r  and l e t  

t l ,  t2, . .  ., 5 be zero crossings of x( t ) .  

t h e  proof show inmediately t h a t  N n >  M a s  soon as n i s  s u f f i c i e n t l y  la rge .  

N tends t o  i n f i n i t y  a s  required.  

The arguments i n  the  f i r s t  pa r t  of 

Thus 

n 
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. Let us now consider crossings by a stochastic process (X(t): 0 <, t 5 1). In 

order that crossings be defined we can here make the minimal assumptions that X(t) 

has, with probability one, continuous sample functions and has continuous one- 

dimensional distributions. 

one, X(t) is a continuous function and X(k2-") # 0 for k = 0,1, ... 2", n = 1,2 ... 
and therefore the previous lemmas will apply. 

To show that N, the number of zero crossings by X(t), is indeed a random 

Under these assumptions we have that, with probability 

variable we need to temporarily write X(t) as X(t,w) to explicitly show the de- 

pendance of X(t) on the "sample point" w. That is, our basic probability space 

is, say, (Q,a,P) and u E Q. 

w. Now N = N (w) can be written as 

For each fixed t, X(t,u) is a measurable function of 

n n  

But 

since X(t,w) is a random variable for each t. Thus, clearly N (u) is a random n 
variable for each n. 

functions are continuous, there is by Leuuna 2.2.2 a measurable set A of 8 such that 

Nn(u) -> N = N(w) for w E A and P(A) = 1. 

Then N(u) as the probability one limit of a sequence of random variables is clearly 

a random variable itself. 

with probability one. 

Since we have assumed that, with probability one, the sample 

For w E Q-A let us define N(o) = 0. 

We may note that up until now N has only been defined 



We note here also that we should more properly talk about crossings by the 

sample functions or realizations of the process X(t) although we shall usually 

use the less precise phrase "crossings by X(t)". 

2 . 3  A Special Case - The Random Cosine Wave. 
In almost no situation is it possible to actually obtain the distribution 

of the number of crossings or upcrossings. 

the so-called random cosine wave the simple ad hoc derivation will be given 

here. 

Since such results are possible for 

Suppose we have a stochastic process X(t) which can be expressed as 

(2.3.1) X(t) = A cos(ut+t3) 

where o is a fixed constant and A (the amplitude) and B (the phasey are in- 

dependent random variables A having a Rayleigh distribution, i.e. 

P(A > a) 2 = exp(-a /2) for a 2 0 ,  and 0 being uniformly distributed on (0, 2~). 

It is well-known that in this case X(t) is a stationary normal process with 

zero mean and covariance function r(?) = COSUT. 

function has a single jump at the frequency 0. 

be obtained can be considered as approximations to the corresponding results for 

a stationary normal process with a very "narrow band" spectrum centered at o. 

The spectral distribution 

Thus the process and results to 

Let Nu(T) denote the number of upcrossings of the constant level a by X(t) 

in the time interval (0,T). 

(if any) always occur at points 2x/o apart. 

T = 

interval ( 0 ,  2m/o) there will either be n upcrossings (if A 7 a) or none at all. 

Hence we need only consider in detail the interval (2m/u,T) or, by stationarity, 

we can consider the interval (0,2Qn/o). 

X(t) as in Figure 2.3.1. 

From the nature of the process, the upcrossings 

It is convenient to express T as 

2m/o + 2&r/o where 0 <, 8 < 1 and n is a non-negative integer. In the 

Consider a typical sample function of 
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Figure 2.3.1 

There can be a t  most one upcrossing i n  (0,2&r/o) an t h i s  occurs or y i f  A >  a 

and T c (2n-e)/w <, 28n/o + T where T, as i n  Figure 2.3.1, i s  the  d is tance  from 

an upcrossing t o  the  next maximum of X ( t ) .  

- -  
But f o r  any o, 

PEA > a and T 2 (2n-e)lw <, 2&/0 + 7) = PEA > a )  .P{O 2 8 5 2&r) 

= Bexp(-a /2). 2 

Thus we have the  complete r e s u l t  

Theorem 2.3.1: 

t h e  number of upcrossings of t he  level  a i n  the  i n t e r v a l  (O,T), then 

I f  X ( t )  is a random cosine wave as defined above and N (T) i s  
U 

2 P { N ~ ( T )  = n) = (1-e)e -a /2 
9 

2 P ( N ~ ( T )  = rrl-1) = @e -a /2 
9 

where n and e are defined by T = 21ur/o+ 28n/u, n being a non-negative in teger  

and 0s 8 <  1. 

2 /2 Corol la rx  2.3.1: e{Nu(T)) = ?;; 

2 -a 12 
2 2 

Var{NU(T)) = [n + (2n+1)8 - e-a ’*] e 

For upcrossings of the  zero level, i .e .  a = 0, the  variance reduces t o  8(l-e). 



CHAPTER I11 

THE MEAN NUMBER OF CURVE CROSSINGS 

3.1 The Stationary Case. 

The problem of obtaining the mean number of zeros or,  more generally,  the 

mean number of crossings of a level  a by a s t a t iona ry  normal process has been 

considered by a number of authors beginning with the notable,  i f  somewhat h e u r i s t i c ,  

work of Rice (1944). 

mathematically rigorous method, the mean number of real roots  of a polynomial with 

normally d i s t r ibu ted  coef f ic ien ts .  More recent ly  these r e s u l t s  have been extended 

t o  more general normal processes by Ivanov (1960), Bulinskaya (1961), I t o  (1964) 

and Ylvisaker (1965). The two l a t t e r  authors i n  f a c t  give the complete so lu t ion  

t o  t h i s  problem. Specif ical ly ,  i f  X(t) i s  a zero mean, s t a t iona ry  normal process 

with continuous sample functions and N i s  the  number of crossings of the  leve l  a 

by X(t) f o r  t E (O,l), then 

A t  about the  same t i m e  Kac (1943) w a s  able  t o  obtain,  by a 

dL where r(r) i s  the covariance function of X(t) and r"(7) = 7 r ( r ) .  The r i g h t -  
dT 

hand-side i s  t o  be interpreted as +w i f  the  second der ivat ive of r ( r )  a t  T = 0 

does not exist. I f  the sample functions a re  not continuous with probabi l i ty  one, 

then the  work of Belayev (1961) shows t h a t  E{N] = +w and hence a l l  possible 

s i t u a t i o n s  have been covered f o r  level crossings by s t a t iona ry  normal processes. 

Under the  same conditions given above, the mean number of upcrossings or  down- 

crossings i s  given by #e[N). 
Extending the  problem i n  two direct ions,  Leadbetter (1965) considered the 

s i t u a t i o n  where the fixed leve l  a is replaced by a curve a ( t )  and the  normal process 

i s  e i t h e r  s t a t iona ry  or i s  the in tegra l  of a s t a t iona ry  process - a pa r t i cu la r  non- 
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s t a t iona ry  case. 

under r a the r  weak s u f f i c i e n t  conditions.  

Methods similar t o  those of Bulinskaya were used t o  obtain C(N) 

The f i rs t  main r e s u l t  t o  be obtained here  (Theorem 3.3.1) i s  a l s o  contained 

i n  a paper of Leadbetter and Cryer (1965a). 

assumption i s  used i n  dealing w i t h  t h e  j o i n t  d i s t r i b u t i o n  of X ( t )  and X ' ( t )  ( t he  

quadrat ic  mean der iva t ive  of X ( t ) .  

normal cases has  recent ly  been shown by Leadbetter (1966~1) where c e r t a i n  conditions 

on such j o i n t  d i s t r ibu t ions  are assumed. 

It should be noted t h a t  the  normality 

That t he  r e s u l t s  can be generalized t o  non- 

3.2 The Non-stationary Case. 

Suppose now we consider a general non-stationary normal process X ( t )  with 

mean e{X(t)) = m(t) and covariance cov[X(t),X(s)] = r(t,s). 

of non-stationary processes,  curve crossings may e a s i l y  be reduced t o  zero crossings 

s ince the  number of crossings of t h e  curve a ( t )  by X(t) i s  the  same as the  number 

of zero crossings by the  non-stationary process X ( t ) - a ( t ) .  

t o  ob ta in  the  mean number of zero crossings by X ( t )  f o r  t e  (a,b) it i s  s u f f i c i e n t  

t o  obtain the  r e s u l t  fo r  t E ( 0 , l ) .  

by Y ( t )  = X(t(b-a)).  Then 

Within t h e  framework 

We note  fu r the r  t h a t  

To see t h i s  def ine a new process (Y(t): te(O,l))  

&(Y(t)) = m(t(b-a)) and cov[Y(t),Y(s)] = r(t(b-a),s(b-a)) 

so  cont inui ty ,  d i f f e r e n t i a b i l i t y ,  etc.  of the  mean and covariance of X(t) a r e  

equivalent t o  the  corresponding propert ies  of Y ( t ) .  

a r e  i n  terms of m y  r and t h e i r  der ivat ives ,  e t c . ,  there  i s  no l o s s  of genera l i ty  

i n  considering the  problem of obtaining the mean number of zero crossings by X ( t )  

f o r  t E (0 , l ) .  

Hence as long as our r e s u l t s  

The main r e s u l t  can now be stated and proved. 

3.3 The Mean Number of Crossings. 

We assume throughout t h i s  sect ion t h a t  (X(t): tc[O,l])  i s  a normal process with 

e{X(t)} = m(t) and cov[X(t),X(s)] = r(t,s). 
der iva t ive  of X( t ) .  

L e t  X ' ( t )  denote the  quadrat ic  mean 
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Theorem 3.3.1: 

that r(t,s) has a mixed second partial derivative which is continuous at all 

diagonal points (t,t), t~[0,1], and that the joint distribution of X(t), X'(t) 

Suppose that m(t) has a continuous derivative m'(t) for t~[O,l], 

is non-singular for each te[O,l]. Then 

(3.3.1) 

where 

2 X 
@(x) = (23~)-'e-~ I2 , and O(x) = .f @(u)du. 

We note that X'(t) exists by the assumptions on r(t,s) and further 
2 2 

a = var[X(t)], y = var[X'(t)], and p = cov[X(t),X'(t)] . 
We further note that, under the conditions of the theorem, the work of 

Leadbetter (1966a) implies that the probability is zero that X(t) will become tan- 

gential to the zero level somewhere in 0 < t < 1 and thus the mean number of times 
X(t) actually assumes the value zero is also given by the right-hand-side of(3.3.1). 

The proof of this theorem will be given by a sequence of lemmas. 

Let {Yn(t): te[O,l]) be the piecewise linear process defined in (2.2) which 

approximates X(t) and let Nn denote the number of zero crossings by P (t). 

the Second Order Calculus Theorem of LoSve (1960, p. 520) we know that, with 

By n 

probability one, the sample functions of X(t) are Continuous functions and further 

X(k2-") # 0, for k=10,1, ... 2". Hence we may apply Lemma 2.2.2 and the monotone 

convergence theorem to obtain 

- Lemma 3.3.1: &{Nn} &EN) as n m. 
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To evaluate e{N ] we use a sequence of functions which, speaking loosely, n 

approach a "Dirac delta function." 

negative integrable functions is called a delta-function sequence if 

Specifically, a sequence (6 (x)) of non- n 

(D 

(i) J Gn(x)dx = 1 for each n 
-m 

and for any E > 0 we have 

E 

(ii) Iim J sn(x)aX = 1. 
r r m  -E 

Let YA(t) denote the derivative of Y (t) at points not of the form n 
n k2-", k=O,l, ... 2 , 

hand derivative at 

Lemma 3.3.2: With 

- 
Nn - 

1 and 

n the right hand derivative at 0,2-n,. . . ,(2 -1)2-n and the left 

t = 1. Then for any delta-function sequence { 6  (x)) we have 
V 

probability one 

Proof: Write 0 4 ~  = k2-n, Yn(t) = % + Bkt for tEIOIk,%l) aud pk = Yn(%). Then 

1 2n-l %l 

(3.3.2) 

With probability one, f3, is not zero for any k=O,l,  ..., 2". 
function properties it follows that if f3 and f3 have the same sign, the corre- 

sponding integral tends to zero as v 3 ao. 

this integral converges to +, 1. Thus if the interval (C$sl) contains a zero 

of Y (t) the corresponding term in the sum tends to 1 and otherwise it tends to 

From the assumed delta- 

k l C t l  

If Bk and p,, have opposite signs 

n 
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zero. Hence the first part of the lemma is proved. 

from (3.3.2) since each term in the sum is dominated by 

lemma follows. 

The second part follows easily 
1 

6 (x)dx = 1. Hence the 
V 

0 

The results of this lemma enable us to apply dominated convergence and Fubini's 

Theorem for positive functions to obtain 

(3.3.3) 

where p (v,w) is the bivariate normal density function for Y (t),Y'(t). That is n n n 

pn(vyw) = (211D5-l exp{-[C(v4Y)2 - 2B(v-Cr)(w-B) + A(w-B 2 )]/(2D)) 

in which 

a = an(t) = &{yn(t)) Y b = B n W  = aY;(t)I 

A = An(t) = Var{Yn(t)) Y C = Cn(t) = var{Yi(t)) 

B = Bn(t) = Cov[Yn(t),Yn(t)], and D = Dn(t) = AC-B 2 . 

We note that for any probability density function f(x), we may obtain a delta- 

function sequence {&  (x)) by defining & (x) = vf(vx). 

the normal density f(x) = (2n) e 

change of variable 

In particular if we take 
V V 

2 
we obtain from (3.3.3) after a simple -% -x /2 

To simplify this expression and obtain its limit as n a, we need the 

following limits. 



16 

Lemma 3 . 3 . 3 :  The following are uniform limits in 0 2 t 2 1 as n OD: - 
(i) an(t) m(t), (ii) Bn(t) --3 m'(t), (iii) An(t) --3 r(t,t), 

where 

That is, the moments and cross-moments of Y (t), Y'(t) converge uniformly to n n 

the corresponding moments of X(t), X'(t). 

Proof: 

where as always k (t) is the unique integer such that k (t)2-n <, t < (kn(t)+1)2-". 

Thus, as n 7 (D , in and jn both tend to t uniformly. 

For notational convenience let us write i = kn(t)2-n and & = (kn(t)+1)2-", n 

n n 

Now by the definition of the Yn(t) process (equation 2.2.1) we have 

an(t) = m(in) + 2"(t-in)[m(jn)-m(in)l . 
By the mean value theorem there is a number X 0 < Xn < 2-", such that n' 

m(jn) - m(in) = 2-n m'<in+Xn) . 
Thus 

2 

lm'(t) I < 0 0 .  

uniform limit (i) is obtained. 

Im(in) - m(t) I + 2 3  , 

where K = max Hence, by the uniform continuity of m(t), the 
tc[0,11 

Also by definition 

and thus 
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Thus the uniform continuity of m'(t) and the uniform convergence of i n + hn to t 
yields the limit (ii). 

Again from the definition of Yn(t) we obtain 

where in < pn, X < jn, using the mean value theorem twice. 

ions, t - in 6 2 and j - t < 2'n. Hence 

Now, by their definit- 
n 
-n 

n 

where in< pn, An< jn. 

Hence 

Rcl 
I B p  - rol(t,t)l 5 Irol(t,t) - rol(in,pn)l + 2 (t-in)lrol(~n,~n) - rOl(in,~n)I 

01 since ro1(tyt) = rlo(t,t). 

we see that (iv) holds. 

Finally we have 

Using 2"(t-in) 5 1 and the uniform continuity of r 

2n 
cn(t) = 2 [r(inyin) - 2r(in,jn) + r(jnyjn)l . 
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Let Y(x) = r(x,jn) - r(x,in). Then we can write 

Thus the uniform continuity of I’ 

C (t) 

(t,s) for 0 2 t, s 5 1 shows that 11 

r (t,t) uniformly in 0 5 t 2 1 and the proof of the le- is completed. n 11 
We are now in a position to prove the theorem. Applying Lemma A.2 to the 

quadratic form in p (v,w) we see that the integrand in ( 3 . 3 . 4 )  is dominated by n 
2 2 -v /2 2 

(2nD’>-llwIexp{-#[v +(w-B) /C]) and converges to (2n)-’lwle Pn(0,W) as 

v 3 C D .  

are bounded functions of t for any n. 

From the calculations of Le- 3 .3 .3  it is clear that B (t) and C (t) n n 
By the same lemma 

L 
Dn(t) --3 r(t,t) rll(t,t) - rOl(t,t) 

uniformly and this is non-zero by the assumed non-singularity of the joint density 

of X(t), X’(t). 

from zero for 0 

Thus, at least for sufficiently large n, Dn(t) is bounded away 

5 t 5 1. 
l a 0  

Hence, by dominated convergence, 

1 1 Iwlpn(O,w)dwdt 

(2n)-l I 1) -# I (wlexp{-[Cc? + 2m(w-f3) + A(~-/3)~]/(2D)]dwdt . 
0 -00 

OD 

0 -ai 
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Now using the limits of Leuma 3.3.3 and bounded convergence the required result 

follows. 

The mean number of upcrossinas or downcrossings of the zero level (or of a 

curve) may be obtained in a completely analogous fashion. 

stated as follows. 

The results may be 

Theorem 3.3.2: Under the assumptions of Theorem 3.3.1 and with the same notation, 

the mean number of upcrossings of the zero level in [0,1] is 

(3.3.5) 

The mean number of downcrossinPs is given by 

The details required for converting such results to those for curve crossings 

may now easily be stated. 

Theorem 3.3.3: 

the same conditions as in Theorem 3.3.1, the mean number of crossings (upcrossings 

and downcrossings) of the curve a(t) is given by (3.3.1) ((3.3.5), (3.3.6))with 

m(t) replaced by m(t) - a(t) and m'(t) replaced by m'(t) - a'(t). Further the 

mean number of crossings (upcrossings, downcrossings) for t in [a,b] is obtained 

by intergrating t Over this interval instead of [0,1]. 

If a(t) has a continuous derivative for 0 < t <  1, then, under 

When we are dealing with stationary processes these results simplify in the 

following manner. 

Corollary 3.3.1: 

covariance function r(T). Let a(t) have a continuous derivative a'(t) for 

te[O,T]. 

number of crossings of a(t) for te[O,T] is given by 

Suppose X(t) is a stationary normal process with zero mean and 

Then if I.(.) I < 1 for 7 # 0 and r"(T) exists at T = 0, then the mean 
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T 1 (3.3.7) - I @[a(t)/uo112u2@ [a'(t)/a21 + 

where u t  = r(0) and o2 = -r"(O). 

OO 0 

2 

This special case is a result of Leadbet 

a' (t) (20  [a' (t)/u2] -1)) dt 

er (1965). Notice that uo and a2 are 

the only parameters of the process which appear in (3.3.7). Similar results fol- 

low for upcrossings and downcrossings. 

Corollary 3.3.2: 

constant, a, then the mean number of crossings of a in [O,T] reduces to 

T[-rlf(~)/r(~>~ ' e -a 'r2r(0)1, the well known result for this case . 

Under the conditions of Corollary 3.3.1, if a(t) is in fact a 

2 

lr 

The conditions of Theorem 3.3.1 are, in fact, sufficient for the finiteness 

of C{N). 

to an infinite mean. 

The next theorem shows that a slight relaxation of the conditions leads 

Theorem 3.3.3: 

the second mixed partial derivative of r(t,s) does not exist at all diagonal 

points. Specifically we assume that, as n 7 a,, 

Suppose all of the conditions of 'Ilheorem 3.3.1 hold except that 

tends to infinity for t in a set S of positive Lebesgue measure. (in = kn(t)2-n, 

jn = in+2-9 Then ~{NI = +a. 

Proof: From the proof of Theorem 3.3.1 we can still write 

2 -v /2 l o t 3 0 0  
e{Nn) = lim (2rr)-' J I I lwle PU(v/v ,w)dvdwdT 

-,OD 0 -a0 -00 

l a ,  
2 I I IwlPn(O,w)dwdT 9 

0 -a, 

by Fatou's Lemma. 
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Exp l i c i t l y  

( 3.3.10) 
2 f 5 D # a ,  

21f -(D 

= - 1 lwlexpC-[a C+2aB(D w-p)+A(D ~-p)~] / (ZD)}dw 

CB A -*O and - e 0  
D D .f; 5 

00 

Hence from (3.3.10) J lwlpn(O,w)dw 3 +a, as n 3 m f o r  teS  . Therefore 
-a, 

another appl ica t ion  of Fatou's Lemma t o  (3.3.9) y ie lds  &{N } 3 +a0 and thus 

t h e  theorem follows. 

n 

The condition t h a t  C (t) of (3.3.8) tend t o  i n f i n i t y  i s  not very easy t o  check n 

i n  terms of a given cwar i ance  function. A somewhat simpler condition can be 

given as follows. 

Corol lary 3.3.3: I f  

A(h,t) -7 m a s  h -7 0 uniformly f o r  t i n  some subin terva l  I of ( O , l ) ,  then 

C n ( t )  

Le t  A(h,t) = he2[r(t+h,t+h) - 2r( t , t+h)  + r(t,t)]. 

(ID as required i n  the theorem. 

The proof i s  easy s ince  i t uniformly i n  t as n 3 00 and j n n n  
= i + h 

i f  we take h = 2-". 

3.4 Fxamples 

(i) The in tegra ted  Wiener process. 

Le t  [W(t):tE[O,m)) denote the  separable Wiener process and le t  

X ( t )  = I W(u)du. Since t h e  sample functions of t h e  Wiener process are known t o  
t 

0 
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be almost surely continuous we can take X(t) as a sample function integral. 

Wiener process is defined as a normal process with zero mean and covariance funct- 

ion &{W(t)W(s)) = min(t,s). 

covariance r(t,s) = -(3t-s) for 0 5 s 2 t; see Parzen (1962), for example. 

derivatives required for Theorem 3.3.1 are readily found to be r 

Now the 

Hence it is easy to show that X(t) has zero mean and 
2 

S The 6 
2 (t,t) = t /2 and 01 

rll(t,t) = t. Thus u(t) = (t3/3)', y(t) = t f and for t > 0, p(t) = (3/4) # . We 
note that the joint distribution of X(t), X*(t) is singular at t = 0, the variances 

being zero, but the assumptions of the theorem are satisfied for t in any interval 
[a,b] with a >  0. 

Wiener process for te[a,b] is given by 

Hence the mean number of zero crossings by the integrated 

I b %  3(1-3/4) 4 @(0)[2@(0)]dt = 5 3' log - b a t  a 

(ii) Crossings of a "linear ramp" by a stationary process. 

Suppose X(t) is a stationary normal process with zero mean and covariance 

r ( T )  satisfying the assumptions of Corollary 3.3.1. 

of the ''linear ramp" a(t) = a+bt (b # 0) for t in the interval (0,T) is given by 

T 

The mean number of crossings 

a result given by Leadbetter (1965). 

(iii) Reliability - a numerical example. 
As stated is the introductory chapter, in analyzing complex systems 

from a reliability point of view it is sometimes convenient to regard some perti- 

nent time-dependent output, such as angular error in missile attitude, as a 

stochastic process. 

main within certain bounds during the mission time. 

periods are more critical than others (for example the "lift-off" phase); then the 

For good performance we would like to have this process re- 

But perhaps certain time 

bounds must account for such periods and must vary with time. 



23 

If we are considering a missile system then a reasonable upper bound for a 

zero mean output X(t) which is critical at lift-off would be 

b a - -  
t3-C 

where a - b/c> 0 and a,b> 0 . 
If we can reasonably assume that X(t) is a stationary normal process then 

M(T), the mean number of crossings of this bound in a mission of length T, can 

be computed by means of Corollary 3.3.1. From a performance point-of-view the 

smaller M(T) the better the system. 

As an example M(T) was computed by numerical integration for particular values 

of a,b,c and for a stationary process with parameters u o ,  02. 

function of T, M(T) is graphed in Figure 3 .4 .1 .  

Considered as a 
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CHAPTW IV 

"E VARIANCE OF THE NuMBw OF CROSSINGS 

I -  
I 

4.1 Introduction. 

In the preceding chapter the mean number of crossings of a curve by a non- 

stationary normal process was obtained under rather general conditions and it was 

noted that, in the stationary case, complete results are available. However re- 

sults on the variance of the number of crossings are more scattered and are all 

concerned with stationary normal processes. 

implicitly contains the formula for the second moment but no conditions for its 

validity are given. Similar heuristic methods were employed by Miller and Freund 

(1956 ) and Steinberg, et al. (1955) obtained the variance of the number of zero 

crossings for a particular stationary normal process. 

a somewhat general situation seems to occur in a footnote of a paper by Volkonski 

and Rozanov (1961) where it is assumed that the covariance function has a sixth 

derivative at the origin. 

formulae for the factorial moments of the number of upcrossings under the condit- 

ion that the process have, with probability one, a continuous sample derivative. 

Their work however does not deal with the finiteness of the moments. The main 

result we obtain here, Theorem 4.2.1, is essentially that announced in Leadbetter 

and Cryer (1965b). 

In Section 2, the second moment of the number of upcrossings of the level a 

The classical work of Rice (1944) 

The first derivation for 

Recently Cramer and Leadbetter (1965) have obtained the 

by a stationary normal process will be obtained. The conditions given are suf- 

ficient for finiteness of the second moment and, as w i l l  be shown by an example, 

are in fact very close to the necessary conditions. 

this result can be used to obtain the corresponding second moment for the total 

number of crossings. 

In Section 3 it is shown how 

Section 4 deals with the covariance of the number of 
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upcrossings in two intervals. In the remaining sections the asymptotic form of 

the variance as the length of the time interval tends to infinity is investigated 

and some numerical calculations are presented. 

4 . 2  The Variance. 

Throughout the remainder of this chapter we assume that X(t) is a stationary 

normal process which has, with probability one, continuous sample functions. The 

time parameter t is contained in an appropriate index set-either [ O , l ] ,  [O,T], 

or [O,OD).  

by r(T) = C{X(t) X(~+T)). 

We assume &{X(t)) = 0 and denote the (continuous) covariance function 

The corresponding (integrated) spectrum F(X) satisfies 

( 4 . 2 . 1 )  
OD 

r(T) = I COS~T dF(X) . 
0 

In considering the number of crossings (or upcrossings) of the level a by a 

stationary process we can assume the variance, r(O), is unity since the number of 

crossings of a by X(t) is the same as the number of crossings of a/[r(O)] 4 by 

X(t)/[r(O)]', a process with unit variance. Hence we suppose r(0) = 1 with no 

loss of generality. 

Let N denote the number of upcrossings of the level a by the process X(t) 
U 

O D 2  
for t E [0,1] and let -r"(O) = X 2  = I 
as follows. 

X dF(X). The main result may then be stated 
0 

Theorem 4 . 2 . 1 :  Suppose the spectral distribution F(X) has a continuous component 

and that the covariance function r(7) has a second derivative r"(7) which, for all 

sufficiently small T, satisfies 

( 4 . 2 . 2 )  

where Y ( T ) / T  is 

Then the second 

( 4 . 2 . 3 )  i?{N2} 
U 

integrable over 

moment of N is 
U 

[0,1] and Y ( T )  decreases as T decreases to zero. 

finite and is given by 
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&ere p (u,v,x,y) is the four-dimensional normal density for the variables 

x(O), x(T),  X1(0), X'(T), X'(7) denoting the quadratic mean derivative of X(T). 
7 

The statement of the theorem as it stands is convenient for theoretical pur- 

poses. From a practical (computational) standpoint, however, the right-hand side 

of (4.2.3) may be made somewhat more explicit, especially in the zero level case, 

i.e. a=O. Specifically we may write 

where the covariance matrix, C = C(T), is given as 

r1(7) 

-r"( T) 

h2 O I  

1 r( 7) 0 
r ( T )  1 - r ' ( T )  

0 -T' (T) l2 rw 0 -r" (2) ! (4.2.5) c =  

When a=O Equation (4.2.3) may be evaluated using Lemma A.3 of the Appendix 

to yield 

1 2 2 5  2 
(4.2.6) C{NZ} = 2 1 (~-T)(C~~-C~~) [l-r (.r)]-3/2(1-*cot-1A)d~ , 

2n 0 

where Cij is the cofactor of the ij-th element of C and A = G34(.Z&-<4)-?iy the 

dependence of C. and A on 7 being suppressed. 
Ij 

The proof of the theorem is quite long and w i l l  be obtained from the several 

lemmas which follow. 

Let N denote the number of upcrossings of the level a by the piecewise linear n 
process Y (t) as defined in Chapters 11 and 111. n 

- Lemma 4.2.1: 

is defined as 

If {E (x)) is a delta-function sequence (defined in 3.3) and u(x) m 

x i f x 2 0  

0 otherwise , 
u(x) = 



then, with probability one, 

1 
= lim .f 6m[Yn(t)-a] o[YA(t)]dt . 

I l r m  0 
Nn 

Proof: Write 4( = k2-", Yn(t) = % + Bkt for t E [s,%+~) and & = Yn(cQ - a . 

0 

where the *ast surrnnation is over those k such that Bk> 

of the delta-function sequence this converges to N 

From the properties 

as in the proof of Lemma 3.3.2. n 

0 -g s, t <, 13. Now consider the unit square {(s,t): Let n be a fixed pos- 

itive integer. 

are i n  the interval. If k2-" 5 s < (W1)2-n t < (W2)2-n or  if 

k2-" 5 t < (k+1)2-n 2 s < (W2)2-" we say that s and t are in adiacent intervals. 

If s and t are not in the same interval nor in adjacent intervals we say that they 

are i n  separated intervals and write S 

arated intervals. With this notation we have 

If for some integer k, k2-" < s, t < (icF1)2-n we say that s and t 

for the subset where s and t are in sep- n 

- Lemma 4.2.2: With probability one 

and 
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Proof: Again let 4, = k2-n. Then from Lemma 4.2.1 

i+ 1 I 

The first term i s  N as i n  the proof of Lemmas 3.3.2 and 4.2.1 and hence we n 

need only show t h a t  the second term i s  zero. 

Consider 

cy. 1+2 a. 
I+ 1 

By the construction of the process Y (t) it is  impossible t o  have an =crossing 

of the  leve l  a i n  each of two adjacent in te rva ls .  Therefore a t  least one of the 

above fac tors  tends t o  zero as m 00 and hence the e n t i r e  second term is  zero 

i n  the l i m i t .  

n 

The last p a r t  of the lema follows as i n  Lemmas 3.3.2 and 4.2.1. 

Using Lemma 4.2.2, the  dominated convergence theorem and Fubini's theorem f o r  

pos i t i ve  functions we inmediately obtain 
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- Lemma 4.2.3: 

I 

To evaluate the second term on the right we need the results of the next two 

lemmas. 

Let Cn= C (t,s) denote the covariance matrix for the variables Y (t), Yn(s), n n 
Y p  , Y p .  

Lemma 4.2.4: 

Yt(t), Y1(s) is non-singular for each n and further there is a positive constant 

c such that lCn(t,s) 12 c > 0 uniformly for (s,t) E S 

For (s,t) E S the joint (normal) distribution of Yn(t), Yn(s), n - 
n n 

n' 

Y p )  = 2"[X((i+l)2'9 - X(i2-")] 

with similar expressions for Yn(s), Y'(s) (replace t by 8 ,  i by j). 

vector yl = 

ion of the vector E' 

Hence the n 
(Yn(t), Yn(s), Yt(t), Y'(s)) may be written as a linear transformat- n U 

= (X(i2-n), X((i+l)2-n), X(j2-"), X((j+1)2-")), Viz.  

y = M  where M is given as 

M =  

- 
0 0 n 1-2"t+i 2 t-i 

0 0 l-Ps+j 2"s-j 

-2" 2n 0 0 

0 0 -2" 2" 
c 

Since (s,t) E Sn the integers i, i+l, j, j+l are all different and thus by 

Lema A.l the joint density of 5 is non-singular. 

easily found to be 1M1 = 22n and therefore the joint distribution of y is always 

But the determinant of M is 
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, 
non-singular. Further as ( s , t )  varies Over S the determinant of the covariance 

matrix Cov(5) takes on only a finite number of values, a l l  of them strictly pos- 

n' i -  

t 

I 
4n itive. But CW(~) = M Cov(d M' and thus ICov(;e> I = 2 ICov(5) I and the exist- 

I ence of the constant c is established. 

, - Lemma 4.2.5: As n -> 00 the following limits hold uniformly for 0 <, 8 ,  t 5 1. 

Proof: From the definition of Yn(t) we have 

where in = kn(t) and jn = kn(s). 

Expanding the covariance function r(?) about the point t-s leads to 
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By definition of in, j, the quantities I1-2"t+in), 11-2ns+jnl, 12nt-i I and n 
(2"s-j I are all bounded by 1 and thus n 

Since r'(7) is uniformly continuous and bounded for 0 5 7 5 1 the required uniform 

limit (i) is obtained. 

Again by definition we have 

Using three term expansions we find 

and since r"(T) is also uniformly continuous and bounded for 0 5 7 <, 1 the desired 

result (ii) holds. 

Finally we have 

Again using three term expansions we obtain 
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-n 
Now by the definition of i and j (in-jn)2 --> t-s uniformly in (t,s) as 

n -> 0 0 .  1 2 
continuity of r", (iii) is proved. 

n nJ 
Therefore 8 and 8 each converge to t-s uniformly and by the uniform 

Lemma 4.2.6: 

(4.2.8) 
m a l  

E%NtI = &{NnI + I I .f 1 XY P, ,(a,a,x,~)dxd~dsdt , sn 0 0 J J  

where p (uJvJxJy) is the four-dimensional normal density for Yn(t) Yn(s) 
nJtJs 

Y p  J Yp). 

Proof: We first note that for (s,t) E Sn we have 

(4.2.9) 
o o o o o o o 3  

= J I I I xy sm<u-a) sm(v-a) P, (u ,v ,x y) dudvdxdy . 
0 0 - 0 0 -  J J  

Explicit ly 

(U,V,XJY) = (2a) -2 IC, I t exPr-%(uJv,xJP) C;I1(UJVJXJY)' 1 
'n,t,s 

and by taking, as in Chapter 111, 6,(x) = m(2rr)-' exp(-m 2 2  x /2) the right-hand side 

of (4.2.9) becomes 

dudvdxd y 

dudvdxdy 

Now by Lemma 4.2.4 we know that IC I = IZn(t,s)I is bounded away from zero n 

uniformly for (s,t) E Sn. Further an application of Leuma A.2 shows that 

-1 
eXp[-HUJV,XJy) En (u,vJxJ~) ' 1 
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where f$ is the cuvariance matrix of Y'(t), Y:(s). 

% is non-singular for (s,t) E S 

are bounded functions of s and t, the diagonal elements being bounded away from 

zero when (s,t) E Sn. 

As a corollary to Lemma 4.2.4, n 

5l and indeed by Lemma 4.2.5 the elements of n 

Hence by dominated convergence we obtain 

dudvdxdydsdt 

m m  

and thus the result is obtained by an application of Lemma 4.2.3. 

In order to obtain the limit of the second term on the right of (4.2.8) we 

must investigate the behavior of X -1 1 xy p (a,a,x,y)dxdy where X is the 
mm 

n n,t,s n 0 0  

indicator function of the set Sn, for t-s = r in a neighborhood of zero. 

will be done in several steps. 

This 

- Lemma 4.2.7: For (s,t) c: Sn we have 

where Cn(t,s) is partitioned into 2 x 2 submatrices as 1-2 :j , Mij denotes the 
cofactor of the ij-th element of C (t,s) and (p1,p2)* = 5 \ -1 (a,a)'. 

n 
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where we use the fact that IC I = 151 I A  I. n 
We notice that for (s,t) E S C (t,s) is positive definite and thus so is n' n 

5.  Hence the factor exp(-#g $'st) never exceeds unity. 
By application of Schwarz' inequality we find 

-a, -a> 

-00 -00 

where A denotes the ij-th element of A . 
1j 

Now let 1;' be also partitioned into 2 x 2 submatrices [Bi B, B3 Bj . men 

it is well known that A =  B;'. Explicitly 

B3 = FJ1[ 3 
and thus 

M44 -534 L 443 M331 ' 
= 1q-l  

i .e. A,1 = 1 %  1-l M44 and %2 = 1% 1-l M33 which completes the proof. 

For notational convenience in the proofs of the next three lemmas we define 
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I 4 

A F B G  

u = Pnt-kn(t) , v = 2ns-k (s) 

r = r(m2-"). 

(k (t) being defined as in 2.2) and for integer m, n n 

m 
Let Xn = X (t,s) be the indicator function for the set S . n n 

2 2 -1 - Lenrma 4.2.8: Xn(t,s)* 1fjl-l <, [x2T + O(T )I 
is uniform in n. 

as ? = t-s -> 0 and the o-term 

Proof: We note that for (s,t) E Sn we have It-s 1 2 2-". 

of S which will be used here. 

This is the only property 

n 
2 With the notation established above we have 131 = AD - F where, by the proof 

of Lemma 4.2.5, 

A = 1 - 2u(l-u)(1-rl) , D = 1 - 2V(1-V)(1-Tl) , 

F = [(l-u)(l-v) + uv]r. + (1-u)vr j-l + (l-v)urj+l and j = kn(t)-kn(s). 
J 

Nowr = 1 - 2  -2n-1 ( ~ ~ 4 )  where $ = X2 + r"(Q1), 0 5 el 5 2'n, and 1 
-2n 2 r = 1 - X 2 m  2 2 -2n-1 + Jr /2 (m=j-l,j,j+l), where qm = [X2 + r"(5,)]2 m with m m 

0 <, f < m2-". m -  

Thus 

AD = (1 - u(l-u)2-2n (X2-4t)1E1 - v(l-v)2-2n (X2-Jr)1 

By definition 0 5 u, v 5 1 for all s,t and n. Further J r  = X2 + r"(6,) < Y(el) 

where Y is the function assumed given in the statement of the theorem. 

tion Y(T) decreases as T decreases to zero. 

By assump- 

Thus, for 1.1 2 2-n , 
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and 2-4n(12-$) 2 < const. -r4. Hence for 1.1 >, 2-n we have - 
AD = 1 - [U(l-U) + V(l-V)]2-2n X2 + O ( 7  3 ) 

5 as T -> 0 where O(T ) is uniform in n. 

NOW 

F = 1 - [j 2 + 2j(u-v) + u +  v - 2 ~ 1 2  -2n-1 x2 + [(1-u)(l-v) + uv31fj/2 

For I T  I >, 2-n we have I j+l )2'n 2 3 I T  I and thus 
2 const. T Y(37) 2 

11-vlu $j+l <, const. 7 y(Ej+l) 5 

and similar bounds for the other qm terms follow. Hence, subject to 1.1 >, 2-", 

2 = 1 - [j 2 + ~j(u-v) + u + v - 2uv12 - 2n x2 + o(t 2 

< [(j+u-vl2 2-2n x2 + o ( 7  2 1 1  -1 

2 
where O(T ) is uniform in n. Therefore 

Xn(t,s) - 

2 
where o ( o  ) is uniform in n as required. 

Lema 4.2.9: 

o-term is uniform in n and K is a positive constant. 

Xn(t,s).M33 5 K T~ I(3.r) + o(7  3 , - 

as T -> 0 , 

as T -> 0 , where the 

Proof: We have 

(4.2.10) = C(AD-F2) + E(2FG-AE) - DG 2 M33 

and we consider the three terms separately. 

From the proof of Le- 4.2.8 we immediately obtain 

x - (m-F2)  5 (j+u-v) 2 2-2n x2 + K 7 2 ~(37) + o(7 3 ) 
n 

where K is a constant and O(T 3 ) is uniform in n. Further C = 22*1(1-rl) = X2 - lf 
and hence, since Xn.$ 5 Y(7) . 
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(4.2.11) X .C(AD-F2) 5 (j+u-v)2 2-2n Xi + K 7 2 \Y(37) + O ( 7  3 ) . n 

I n  considering t h e  second term of (4.2.10), we f ind  

so t h a t  

and hence f o r  I T  I > 2-n 

2FG = 2n[X22-2n(2j+2u-1) + (2u-1)q ( I - U ) $ ~ - ~  - qj+l] 
j 

'[l - ( j  2 +2j(u-v) + u + v - 2UV)X22 -2n-1 

= 2n[~22-2n(2j+2n-1) + (2u-l)$ + ( l -u )~ r  - u qj+l + 0(T3)3. 1 j -1 

The second term of (4.2.10) i s  therefore  

(4.2.12) E( 2FG-AE) = X: 2-2n(v-#) (2 j+2u-v*) - 2-2n $(v-%) 2( -2X2+$) 

+ (v-#)(X,-Jr) r(2U-1)Jrj + (1-uNj - 1 - u Jlj+l 1 + 4T3) 

3 where o ( 7  ) is  uniform i n  n subject t o  1.1 2 2-* . 
To evaluate  the  last term of (4.2.10) we have 

For G we expand rj,l and rj+l around j2-", i .e. 

r 1 I ( k l )  , 2 Y j - 1 )  <, E, <, 2-" j 
- 2-n r, + 2-2n-1 
3 - 1 

- 
1-1 

r 

and 



I 

39 

Then 

Now writing r! = j 2-n r"(e,) , 0 5 E, 5 j 2-n (note r'(0) = 0), we have 
J 

G = 2-" x2(j+u+) - j 2-" e3 + (1-u)2 -n-1 e 1 - u 2  -n-1 
@2 

- j2-2n(1-u)91e3 + j2-"" uo3e2 - 2-2n-1 u(l-u)@l@2 

and therefore 

(4.2.13) -Xn 

-2n-1 3 +j2-2n(~-u)+1+3 - j2-2n uO3e2 + 2 U(l-U)@1@2 + O ( 7  ) 

3 3 as 7 -> 0 ,  where O(T ) is again uniform in n. The o(7 ) comes from terms like 

2-4nj2, 2-4n.2 J e3 and 2-4nj@ which are all dominated by a constant multiple of 7 4 
1 

if 1.1 >, 2-". 

If we combine (4.2.11-13) as required in %3 we find that the terms not 

multiplied by ai, $, or qi, i.e. the first term in each case, all cancel. 

terms that remain in (4.2.12) include, for example, 2 

and u lJj+l = u2 -2n-1 (j+l)2[%+r11(kj+l)] which, subject to 1.1 >, 2-", are all dom- 

inated in absolute value by const. T~ Y(3r) .  

in (4.2.13) is, for example, 2-2n j203 which is also dominated by const. 7 Y ( 3 7 ) .  

Hence by combining these results the lema is proved. 

The 

- 2n j lJ = 2-2n j[X2 + r"(e,)] 

Similarly a typical remaining term 
2 
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L e a  4.2.10: 

where adj. 5 is the adjoint of 5. 
Let v2 denote the second element of the vector 3 adj. l$(a,a)* 

Then there is a positive constant K' such that 

Proof: In our notation we have 

= (D-F)G +(A-F)E . v2 i.e. , 
Using the notation of the proofs of the previous two lemmas, we obtain 

2 -2n-1 
x2 D - F = -v(1-v)2-'~(1,-9) + [j + ~j(u-v) + u + v - 2 w 1 2  

-[(l-u)(l-v) + w3 Jij/2 - (l-ulv 9j,1/2 - (l-v)u J'j+1/2 
and 

2 -2n-1 
l2 A - F = -u(1-u)2-~~(1~-9) + [j + 2j(u-v) + u + v - 2uvl2 

Multiplying by G and E, respectively, we find that the largest of the terms 
-n 3 is dominated by a constant multiple of ( lj 12 

of the terms are in fact O(T ). 

constant K' and the lemma is proved. 

12713, when IT I 2 2-". Most 
3 Thus we have established the existance of the 

Proof of the theorem: 

We first note that M33 and Mu of Lema 4.2.7 differ only in that s and t are 

interchanged. 

of %3. 
only by an interchange of s and t and so Lemma 4.2.10 holds for vl. 

also Lemmas 4.2.7 and 4.2.8 we have 

Thus the result of Le- 4.2.9 is equally valid for M44 in place 

Similarly the first element of 3 adj. \(a,a)', v1 say, differs from v2 

Hence, using 
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where K,. and 5 are positive constants. 
1 1  1 

Now for any even function f, J f(t-s)dsdt = 2 (I-T)f(T)dT. Thus our 
0 0  0 

assumption that Y ( T ) / T  be integrable on (0,l) together with inequality (4.2.14) 

allow dominated convergence to be applied to ( 4 . 2 . 8 )  and we obtain 

1 1  m m  
(4.2.15) CrNtl = C(Nul + 1 ! lim I I XY Pn,t,s (a, a ,x , y) dxdydsdt . 

0 0 11/00 0 0 

(We recall that by Lemma 2 . 2 . 2  and monotone convergence we have 

By Le- A.2 we have 

where 4 is the covariance matrix of Y*(t), Y''(S). 

t # s and for all sufficiently large n, Cov[YA(t), Y*(s)] 5 6 < 1. 

again appeal to the dominated convergence theorem to obtain 

For a fixed point (s,t) with 

Hence we may 
n 

n 

This is the desired result. 

We may notice that the assumption on the behavior of X2 + r"(T)  was not used 

until after Le- 4 . 2 . 6 .  Further ( 4 . 2 . 8 )  may be obtained as an inequality 
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(by Fatou's lemma) without assuming that F(X) has a continuous component, i.e. if 

X < 00 we have 2 
o m  

C(Nn) 2 >, C{Nnl + I J I 1 XY Pn,t,s (a,a,x,y)dxdydsdt . 
sn 0 0 

But now a further application of Fatou's lemma gives 

In fact the restriction X2 < 00 is not really necessary (except to define p ) 

since if X2 = 00, then &{N:] = e{Nu} = a, so that (4.2.16) is satisfied. 

T 

Now we can show, by example, that the conditions of Theorem 4.2.1, which are 
2 sufficient for finiteness of &{N 3 are also very close to being necessary. 

this end we assume that we have a covariance function r(T) with the property that 

To 
U 

(4.2.17) 

That this is possible follows from meorem 1 of Pitman (1960). In particular 
X 2  -r"(cc) is a covariance function with spectrum 1 u dF(u) and (4.2.17) will hold if 

we choose F(X) such that 1 - F(X) = 

from Theorem 5 of Pitman (1960) this choice of F(X) also implies the expansion 

0 

21 for all sufficiently large X. Further 
2X log x 

Now for zero level crossings, i.e. a = 0,some calculation shows that 

where K is a constant (cf. equation 4.2.6). Now using the expansion (4.2.18) we 

find 
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whereas 

2 2 l - r ( ~ )  - X 2 7  . 

Hence 

C Q D D  

! ! xy ~,(0,O,x,y)dxdp - K/(1711og171) as T -> 0 . 
2 

0 0  

It follows that the right side of (4.2.16) is infinite and thus &EN ) = a>. We 
U 

note 

4.3 

that X + r"(7) just fails to satisfy the integrability requirement. 2 

The Variance of the Total Number of Crossings. 

In the previous section the formula for the second moment (and hence variance) 

of the number of upcrossings of the level a by a stationary normal process was 

obtained. Here we shall show how the analogous result for the total number of 

crossings (both up and down) may be obtained from the results of Section 2. 

Let N denote the total number of crossings of the level a by the process X(t) 

As in Section 2 we assume that &{X(t)) E 0 and the covariance r(7) for 0 5 t 5 1. 

is such that X2 < 00 and X2 + r"(7) 5 Y(T) where Y ( T ) ~  0 as ~ $ 0  and Y ( T ) / T  is 

integrable on [0,1]. Further we assume that the (integrated) spectrum F(X) has 

a continuous component. Then we can state the following result for the second 

moment of N. 

where pT(u,v,x,y) is the four-dimensional normal density for X(O), X(T), X'(O), 

X ' ( 7 ) .  

In the zero level case we can use Le- A.3 to obtain the somewhat more ex- 

plicit result 

1 
2 (4.3.2) &(N2) = - +  1; -f ( 1 - . r ) f ~ 3 - ~ 4 ) ~ [ l - r 2 ( = ) ] - 3 ' 2  (1 + A tan" A)dT , n n o  
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where, as in (4.2.6), the Cij are cofactors of the matrix C defined by (4.2.5) 

and A = C34(<3-<4)-'. This is the formula of Steinberg et a1 (1955). 

The proof of (4.3.1) will, again, be given via several lemnas. 

Lemma 4.3.1: - 
2 1 1 c D m  0 0 

&IN2? = 2 1; e-a '2/fi + 2 I [I 1 + .f 1 1x9 ~~_~(a,a,x,y)dsdydsdt 
0 0  0 0 Qo -00 

where @(x,y;p) is the standardized bivariate normal density function with cor- 

relation coefficient p. 

Proof: 

N < 00 with probability one and thus, by Lennua 2.1.2, N = Nu + Nd, where Nd is the 
number of downcrossings on [0,1]. Thus 

We first note that the assumption h2 < 00 is sufficient to ensure that 

&{N2] = &(N2] U + &{Ni? + 2&{NUNd] . 

By Lema 2.1.4 we obtain 

a m  
= 2 1 @[x,y;r(l)]dxdy . 

-00 a 

But also 

Hence 

a m  
&(N21 = 2e(N2) U + 2€{N3 - 2 I 1 ~[x,y;r(l)ldxdy . 

-m a 

(Note that Cov[Nu,Nd] may also be obtained at once from this derivation). 

Now X(t) has a downcrossing of a at to if and only if -X(t) has an upcrossing 
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of -a at t Thus by Theorem 4.2.1 
0' 

and since C{N) = 2C{Nu} = 2C{Nd1 we obtain the le-. 

Next we need the following result. 

Lenrma 4.3.2: Let the covariance matrix C be partitioned into 2 x 2 matrices as 

c; C;' C2 = 
2 [: ;3 1-r 

where the argument of r and rf has been suppressed. 

Proof: The proof is by straight-forward calculation once the identification 

is made. 

Now by considering the xy integration in (4.3.1) in each of the four quadrants 

and then using Lemma 4.3.1, we see that the theorem will follow if we can show the 

next lemma. 
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2 1 1  OD OD 

1: e-a I2/n + I r J r xy p (a,a,x,y)dxdydsdt t-s 
0 0 -  -00 

where p = r(1). 

Proof: As in the proof of Lemna 4.2.7, we write 

The right-hand side may easily be evaluated by considering it as a bivariate 

product moment to obtain 

where subscripts on square brackets indicate the elements of the matrix or vector 

to be taken. Thus by Leuuua 4.3.2 we have 

(4 .3 .3)  

where r = r(i), r? = rt(T), r" = r''(7) and T t-s. 

Now for any function f(x) whose derivative f'(x) is even and integrable we 

have 

1 1  1 
I I f?(t-s)dsdt = 2 I (1-7) f'(T)dT 
0 0  0 
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and in t eg ra t ing  by p a r t s  gives  

1 1  1 
I I f ' ( t -s)dsdt  = 2 l i m  f (7)  -t 2 1 f(T)dT . 
0 0  T->o 0 

1 d r' exp[-a2/(l+r)l 

d7 ~rr(1-r 2 %  
Noting t h a t  t h e  right s ide  of (4.3.3) is j u s t  - -[ 

we have 

2 

2 %  o rr[1-r2(T)+ r > O  2n(l-r ) 

r'(7) exp[-a 2 /(l+r(~))I dT. - I  r' exp[-a /(l+r)1 
= l i m  

2 2 Using t h e  expansion r ( T )  = 1 - X T /2 + O(T ) it i s  easy t o  show t h a t  t he  l i m i t  on 

t h e  r i g h t  i s  j u s t  -X$ e-a /2/n so t h a t  t h e  proof of t h e  lemma, and hence the  

2 2 

theorem, w i l l  be complete Once we obtain 

Working with the  left-hand s i d e  we make t h e  subs t i t u t ion  r(7) = s which t rans-  

forms t h i s  i n t o  

Now consider t h e  right-hand side.  C r d r  (1963) has given the  usefu l  r e l a t i o n  

which is t r u e  f o r  any real a,b  and any p sa t i s fy ing  l p l  < 1 . 
Hence 



Therefore it remains to show that 

If we write the right-hand side as a double integral and then change to polar 

coordinates we find 

oom 3n/4 a/cose e-%~2 
RdRde + I -  2rr RdRde . 

-a a o a/sine n/2 a/sine 

Carrying out the integration over R and then making the substitutions 
2 2 2sin 8 = l+s in one place and 2cos 8 = l+s in another we are finally led to the 

left-hand side of (4.3.4). 

Thus the lema and hence the theorem are proved. 

4.4 Covariance of the Number of Upcrossings in Disioint Intervals. 

Let, as before, N denote the number of upcrossings of the level a by X(t) 
U 

for 0 <, t 5 1 and let M 

moment &[N .M 1 is of interest and we shall now show how it may be derived by 

methods completely analogous to those of Section 2. 

number of upcrossings by X(t) for T - 1 5  t 

We now state the main result using the notation of Section 2. 

denote the same quantity for T - 1 5  t <,T. Then the 
U 

u u  
If 1 < T < 2 let Ku be the 

1, i.e. on the overlapping interval. 

Theorem 4.4.1: We assume that F(X) has a continuous component and that X2 is 

finite. 

(i) If 1 <  T 5 2 and there is a function Y ( 7 )  as in meorem 4.2.1, then 

(4.4.1) 
T 1 (DQ) 



49 

(ii) If T > 2, then 

T 1  m c u  
(4.4.2) 

In both cases the moments are finite. 

Proof: The proof will be only sketched since it is similar to that of Section 2. 

We first observe that we need only prove (4.4.2) since (4.4.1) follows from 

(4.4.2) together with the variance (4.2.3). 

A, K 

(T-1, l), and (1,T). 

To see this suppose 1 < T 5 2 and let 

and B denote respectively the number of upcrossings for t in (0, T-1), 
U 

Then Nu = A +  Ku and Mu = K + B.  Hence 
U 

dxdydsdt 

where of course we are using the fact that (4.4.2) holds for anp two disjoint 

intervals with obvious modifications. Hence we only prove (4.4.2). 

Let Nn and Mn denote the number of upcrossings by Yn(t) in (O,l), (T-1, T), 

respectively. 

(T-1, T) is divided into 2"+1 equal intervals and then Yn(t) = X(t) at the end 

points of the intervals. 

(Y (t) is defined on (T-1, T) in the same manner as on (O,l), i.e. n 

Between such points, Yn(t) is linear.) 

Ehctly as in Le- 4.2.1 we have (with probability one) 

T - 
Mn = lim .f sn[Yn(t)-a]u[Y~(t)]dt 

F !  T-1 

and hence Leuma 4.2.2 becomes 

T 1  
(4.4.3) NnMn = lim f !- Bn[Yn(t)-albn[Yn(s)-a]u[YA(t) ]o[Y~(s)ldsdt 

IP->OO T-1 o 



50 

where the (s,t) integration may be taken as such since for disjoint intervals s 

and t are in "separated intervals" as soon as n satisfies 2 -n+' < T - 2. 
the integral in (4.4.3) is again dominated by 22n so that the analog of Lenana 4.2.3 

Further 

Le- 4.2.5 is still valid for 0 <, s <, 1 5  T - 15 t 5 T  and Lemma 4.2.4 

can be strengthened somewhat to give IZn(s,t) I 2 C > 0 which holds uniformly for 

O ~ ~ ~ l < T - l ~ t 5 T .  

Therefore we can obtain 

as in T,emiua 4.2.6. 

Naw in our present case since s and t are in disjoint intervals we need not 

at s = t and we can proceed to of Pn,t,s be concerned about the "singularity" 

dominate p 

so that, using dominated convergence, 

(a,a,x,y) by a function independent of n and integrable as required 
n,t,s 

T 1 o o c u  
E(N .M 1 = lim = lim I I I I xy pnYtys (a,a,x,y)dxdydsdt 

R->OO T-1 o o o u u  n->a, 

Clearly the lower bound analogous to that given in Theorem 4.2.2 is also 

valid. 
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4.5 Asmptotic Results for Var{N(T)). 

We wish now to consider the limiting behavior of the variance of the number 

of crossings of the fixed level a by X(t) for 0 5 t T as T -> 00 .  For this 

purpose we extend our notation slightly and write N(T) for the number of such 

crossings to show the dependence on T. 

We assume throughout this section that the conditions of Theorem 4.2.1 hold 

and we write 

(4.5.1) 

A 

Noting that 1 (l-:)d.r = T/2 and using Theorem 4.3.1 and Equation (3.1.1) we 
0 

have 

(4.5.2) 
T # 2 Var(N(T)) = ( X P T / r c )  exp(-a /2) + 2Tj (l-;) g(7)d-r . 

0 

m I 

Now if lim 

where c is a constant. 

(1s) g(7)d.r exists (finitely) then we have Var{N(T)) - c T 
If g(r) is (absolutely) integrable on (0,oo) then by 

P->m 0 

dominated convergence 

However, integrability of g(7) is not necessarx for convergence; e.g. 

Nevertheless integrability of g(r) seems to be the most convenient condition, and 

we w i l l  show that it holds under rather mild conditions on r(7). 

give a result for a very special case. 

First however we 

Theorem 4.5.1: If r(7) = 0 for r 3 ro, then for T 2 T~ we have 

(4.5.3) 
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i . e .  the variance i s  exact ly  l inear  i n  T, f o r  a l l  s u f f i c i e n t l y  la rge  T. 

Proof: By our assumption, f o r  7 >, T r(7) = rw(7) - = r"(7) = 0. Thus f o r  T i n  
0' A L L  

exp[-%(2a2 + + =)] and 
1 

l 2  l 2  2 t h i s  range p (a,a,x,y) = 
(2n) A2 

0 

i . e .  g ( T )  = 0. Hence the  lemma follows. 

W e  might expect similar resu l t s  i f  r ( T )  -> 0 as T -> OD or  i f ,  say, r(7) 

i s  integrable  on (0 ,co) .  

lemmas w i l l  be needed. 

I n  order t o  discuss  such questions,  some preliminary 

Leuuaa 4.5.1: For T > 0 we have - 

( 4 . 5 . 6 )  
2 

r 
X 2 ( l - r  ) - (rt)  

1% l-r 
2 2 

a r t  
l+r h = h(?) = - Y 

Proof: 

e a s i l y  from the  f i r s t  equation i n  t h e  proof of Lema 4.2.7. 

See R i c e  (1958) or  Volkonski and Rozanov (1961). The proof a l s o  follows 
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- Le- 4.5.2: Suppose F(X) is absolutely continuous with density f(X). 

bounded and O(X-2) as X -> a, then r(7), rf(T) and T"(T) are all square integrable 

If f ( X )  is 

on (0,m) and all tend to zero as 'I -> a, . 
2 2 2 Proof: By our assumptions [X f(X)] 5 const. X f(X). Hence since X2 is finite 

2 X f ( A ) ,  Xf(X) and f(X), the Fourier transforms of rl'(T), r*(~) and r(7), respect- 

ively,  are all square integrable on (0,oo). 

rf(?) and r(?) are a l l  square integrable. 

they each tend to zero as required. 

Thus by Parseval's theorem T'*(T), 

Further by the Riemann-Lebesgue lemma 

The behavior of I(b,h) as b,h -> 0 is now considered. 

- Lemma 4.5.3: As b,h -> 0 we have 

2 2 2 (4.5.7) I(b,h) = ;+ O(h ) + O(b ) . 

Proof: 

variances and correlation coefficient p. Then define 

Let @(x,y;p) denote the bivariate normal density with zero means, unit 

From Cram6r (1946) we have the expansion 

where Ex- 

tensive use will be made of this expansion in the next chapter and we defer dis- 

cussion of such questions as convergence, interchange of summation and integration, 

etc. to 5.3. 

by parts we obtain 

denotes the j-th derivative of the normal distribution function. 

If we substitute the expansion into (4.5.8) and integrate each term 
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From the  proof t h a t  the sum (5.3.4) is convergent i t  follows t h a t  the  i n f i n i t e  sum 

term i n  the above i s  o(p ) as p -> 0 uniformly i n  h and k and using the expansions 2 

2 2  
1 hkk + - + -  hk h + k  +e,d!&!Q+Fhk+ 

4% 2(2*)# 2x 
(4.5.9) J(h,k;p) = 2~ - - 

2 (2rr)4 

+ o(k2) + 

0, we f ind 

2 
p +  2x o(h2) 

2 
O(P 1 , 

a s  p, h, k -> 0 . 
But it follows from the def in i t ions  (4.5.6) and (4 .5 .8 )  t h a t  

I (b ,h)  = J(h,-h;-b) + J(h,h;b) + J(-h,-h;b) + J(-h,h;-b) . 

Hence from (4.5.9) we obtain 

t h e  desired r e s u l t .  

Some useful  theorems can now be obtained. 

Theorem 4.5.12: 

densi ty  s a t i s f i e s  

I f  r(T) i s  integrable on (O,a>), X2 i s  f i n i t e  and the spec t r a l  

then 

Var(N(T)) - c T , as T - > o o ,  

where 
00 5 

c = -  l2 e -a2/2 + 2 1 g ( ~ ) d ~  . 
0 

rt 

Proof: 

exists and s ince f(X) = ;; 1 C O S ~ T  t(T)dT, f(X) is bounded by ;; I I.(.) (dr.  

by Lemma 4.5 .2  r(~), r((7) and r"(?) a l l  tend t o  zero as T -> OD and a r e  a l l  square 

We f i r s t  note t h a t  s ince r ( T )  is  integrable ,  t h e  s p e c t r a l  densi ty  f(X) 

2 ° o  2 O 0  Thus 
0 0 
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in tegrable .  

Now, as T -> 00 ,  we have 

l2 2 2 2 A(T)  = X2 + 2 r - rt  + o( r  ) , 

=p[-a 2 r / (~+r) ]  = 1 - a 2 r +  a 2 2  (l+a /2) r 2 + o( r  2 1 , 

b(T) = - +  r" o(r 2 ) + o(r* 2 

l 2  

and 
2 2 + o(r ) + o ( r t  ) . 

Thus from Lemma 4 . 5 . 3  

I(b,h) = ;+ 2 0(rff2) + O ( r  2 ) + O ( r '  2 ) . 
2 2 

2 
Now by ( 4 . 5 . 4 )  g(7) = e-a {(27r)-l exp[-a r/(l+r)] A(T) I(b,h) - X2/x 1 and 

hence 

(4.5.10) 

2 2 2 But under our assumptions r(7) ,  r ( T ) ,  [r*(?)] and [rff(?)] are a l l  i n t e -  

grab le  on (0,m). 

follows from dominated convergence. 

Thus g(T) is integrable  and, as noted earlier,  t he  r e s u l t  

With fu r the r  assumptions we may r e f i n e  these r e su l t s .  The assumptions a r e  

perhaps somewhat less elegant ,  but are easy t o  check and hold i n  many s i tua t ions  

of prac t i ca l  i n t e r e s t .  

2 2 2 Theorem 4 . 5 . 3 :  I f  Tr(T) ,  T r  (T), ~ [ r t ( ~ ) ]  and T [ ~ " ( T ) ]  are a l l  in tegrable  on 

( 0 , ~ )  , then 

Var[N(T)) = d + c T +  o(1) , as T -> 00 , 

where 
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and 
a0 

d -2  .f T g(T)dT . 
0 

Proof: We have 

Var(N(T)) - d - c T = -2 ./ g(7)dT -t 1 T g(7)d7 . 
T T 

By our assumptions and equation (4.5.10) we have that both g(T) and T g ( 7 )  are 

integrable. Hence the proof follows. 

lhe numerical results which follow show that this asymptotic linearity is 

obtained quite quickly in several cases. 

For this case the spectral density is 

4 f(X) = 
Y l (  1+X2) 

Further Y~(T) = -T e-('', rt1(7) = (1.1-1) e-'T1 and X2 = -r"(O) = 1. We note that 

the assumptions of Theorem 4.5.3 are clearly satisfied. 

function Var(N(T)) was numerically evaluated for the number of 

using an obvious modification of muation (4.3.2). 

Var(N(T)) versus T together with the linear approximation given by Theorem 4.5.3 

are plotted in Figure 4.6.1. 

Using this covariance 

crossings 

The calculated values of 

2 2  
-#m T (ii) r(T) = cos1 T e 

0 

If u/Xo is small (we shall use a / X o  = .15) this corresponds t o  a very good 

approximation to the spectral density 

i .e. the process has a "Gaussian spectrum centered at the frequency X . " 
0 
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In this case 

2 2  rl(o) = (-XosinA T-u 2 T COSX~T) e -#U 7 
0 

Again the assumptions of Theorem 4.5.3 are satisfied. 

of zero crossings with X 

the linear approximation. 

The variance of the number 

= 2x,  u = (.15)211 is plotted in Figure 4.6 .2  along with 
0 
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CHAPTWV 

CERTAIN FUNCTIONALS OF NORMAL PROCESSES 

5.1 Introduction. 

As noted i n  Chapter I, when considering the  performance q u a l i t y  o r  r e l i a b i l i t y  

of complex physical systems, i t  i s  s o m e t i m e s  convenient t o  define c e r t a i n  per- 

formance "indices" or  "measures" based on the c h a r a c t e r i s t i c s  of a s tochas t i c  pro- 

cess associated with the system. 

Suppose t h a t  we have such a s tochas t i c  process {X(t): t E [O,T]} and t h a t  f o r  

good performance X(t) should never become "too large.  

i s  a known function a ( t )  such t h a t  for good performance X ( t )  should always be kept 

Specif ical ly ,  suppose there  

l e s s  than a( t ) .  

s t r i c t l y  pos i t i ve  f o r  pos i t i ve  arguments. 

Le t  h be a function which i s  zero for  negative arguments and 

Define the funct ional  

(5.1.1) 

(We assume t h a t  the behavior of h ( t ) , a ( t )  and X ( t )  i s  such t h a t  Z i s  defined.)  

Now i f  with probabi l i ty  one X(t) has continuous sample functions,  then the  

event {Z = 0) is  equivalent t o  the event [ X ( t )  2 a( t ) ,  t E [O,T]) and hence 

and, f o r  example, Chebyshev bounds on P[Z = 0) (using the mean and variance of 2) 

give bounds on P{X(t) 2 a( t ) ,  t E [O,T]?. 

course,  the r e l i a b i l i t y  or probabi l i ty  of a successful mission from t h i s  point of 

view. 

This l a t t e r  quant i ty  represents,  of 

We wish t o  inves t iga t e  forms of the function h which lead t o  t r a c t a b l e  

Chebyshev bounds, i . e . ,  t r a c t a b l e  formulae f o r  e[Z) and Var(Z). 

amenable choice for  h i s  

One p a r t i c u l a r l y  
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We then write Z for Z with the corresponding h as integrand in (5.1.1). Note 

that Z is the proportion of time which the process spends above the curve a(t) 

on the interval [O,T] and T-Z is the areawhich the process cuts off above the 

curve on [O,T]. 

n n 

0 

1 

The Zn's may be called "exceedance measures" for the process as they describe, 

in various ways, excursions of X(t) above a(t); for example Z takes no account of 

the size of such excursions whereas the remaining Z 's do. The first two Z n f s ,  Zo 

and Z 

a normal, stationary process. 

Z is the purpose of this chapter. 

0 

n 
have been considered previously by Leadbetter (1963) and Cryer (1963) for 

The generalization of these results to include all 
1' 

n 

5.2 The Mean and Variance of Zn. 

We assume in the remainder of this chapter that {X(t): t E [O,T]) is a sta- 

tionary normal process with zero mean and covariance function r(T), assumed such 

that, with probability one, the sample functions are everywhere continuous. Sul 

ficient conditions for this latter property are given, for example, in Belayev 

(1961). With no loss of generality we take r(0) = 1, and we assume [.(.)I < 1 a.e. 

Let a(t) be a continuous function defined on [O,T] and define 

(No confusion with the Y (t) of previous chapters should result). 

times use a(t) = at for notational simplicity. 

We will some- n 
Then 2 can be written n 

(5.2.1) 
T 9 

T O  
Yn(t) dt . 

The mean value of z is (by Fubini's theorem) 
n 
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By the definition of h we find n 
00 

&{Yn(t)] = I [x-a(t)In @(x) dx 
t a 

where @(x) is the standardized n o m 1  density function. 

Hence we have 

(5.2.2) 
T C D  1 &{Zn] = ?; I I [x-a(t)ln @(x) dxdt . 

t o a  

n Using the binomial expansion for [x-a(t)] the integral of the form 
W 
(x-c)~ @(x)dx may be evaluated as a finite sum of incomplete gamma functions. 

C 

This would give a useful form for computing purposes. 

For the variance 

(5.2.3) Var{Znl = 

of Z we first note that n 

T T  1 

T o o  

T T  
€{$ 1 .f Y (t) Yn(s)dsdt? - 2 I E(Yn(t)l &CY n (s))dsdt n T o o  

. T T  

NOW 

where @(x,y;r) is the standardized bivariate nonual density with correlation 

coefficient r = r(t-s). 

In evaluating the right-hand side of (5.2.4) the following expansion, which 

may be found in Cram& (1946, p. 290) will be useful. 
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(5 .2.5)  

where 1.1 < 1 and @(j)(x) denotes the j-th derivative of the normal distribution 

function @(XI. 
Substitution of this expansion into ( 5 . 2 . 4 )  and formal interchange of 

summation and integration (the justification will be given in Section 3) yields 

which holds at least for a.e.(t,s). 

For j such that 1 < j < rttl, repeated integration by parts gives 

and if j > n+l 

Hence ( 5 . 2 . 6 )  may be written as 

Note that the first term (j = 0 )  of the finite Sum is 

which is just &{Yn(t))*e[Yn(s)) . 
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Thus 

Substituting this into (5.2.3) and again postponing the justification of the 

interchange of sumnation and integration we obtain the final result 

T T  00 00 1 

j=l j~[(n-j)I] o 0 .  

1 /[rj (t-8) / (x-az)"-j@(x)dx/ ( ~ - a ~ ) ~ - j @  (y) dyldsdt 
n nl 2 

a t S 
a 

varEZnl = E 2 

(5.2.7) 

where it is understood that the first summation does not appear if n = 0. 

For the important special case when a(t) = a, a constant, formulae (5.2.2) and 

(5.2.7) reduce to 

where use is made of the fact that for "any" even function f(?) 

T T  T 
1 f(t-s)dsdt = 2 1 (T-T)f(T)d? . 

0 0  0 

These results have been announced without proof in Leadbetter and Cryer (1965~). 

As noted in the introduction to this chapter, for any fixed n we may obtain 

an upper bound to the probability that the process will never exceed a given level 
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or  curve a ( t )  i n  t h e  t i m e  period [O,T]. Spec i f i ca l ly  we have 

using a one-sided Chebyshev inequality.  

5.3 Convergence Questions. 

To j u s t i f y  the  interchange of summation and in t eg ra t ion  i n  both (5.2.6) and 

It i s  w e l l  (5.2.7) we need t o  look a t  t h e  properties of the functions @(j ) (x) .  

known t h a t  these der ivat ives  a re  re la ted t o  the Hermite polynomials H. (x) , 
1 

(5.3.1) 0(x)2-ji2 Hj(x/2 % ) = (-1) j @ ( j+ l ) (x)  

and thus known propert ies  of the Hermite polynomials can be used. 

Erde'lyi (1953) we have 

From 

where k i s  an (absolute) constant.  

Thus 

where K i s  a constant. 

To j u s t i f y  (5.2.6) i t  i s  s u f f i c i e n t  t o  show t h a t  the s e r i e s  

i s  convergent. 

By (5.3.3) we have t h a t  
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2 
Thus the j-th term of (5.3.4) is less than Kllr(t-8) IS-’ and thus (5.3.4) con- 

verges at least 

we next want to 

To justify 

(5.3.5) 

for almost every (s , t )  E [O,T] x [O,T]. This is all we need since 

integrate over s and t. 

(5.2.7) it is sufficient to establish the convergence of 

From the theory of characteristic functions (for example) we have 

Theref ore 

A 

Using Stirling’s formula again 

where K is a constant. 
T T  

Further 1 I Ir(t-s) I*’ dsdt 5 
0 0  

we find that 

2 K/jrrt3j2 

T2 . 

Thus for any fixed n = 0,1,2, ..., the series (5.3.5) converges as required. 

5.4 Asymptotic Formulae and Numerical Computations. 

In developing same limiting results as T OD we will restrict attention 

to the special case where a(t) = a ,  a constant. Hence we are concerned with 

Equations (5.2.8). We note in particular that 4Zn) does not depend on T. 

Suppose that the covariance function r(?) tends to zero as 1.1 9 00 and is 

in fact (absolute1y)integrable on (O,OD). Then r 5 ( 7 )  for any positive integer 
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j i s  a l s o  in tegrable  and by dominated couvergence 

T 00 
(5.4.1) 1 (l-$)rj(T)d? 3 I rj(-r)dT = aj ,  say,  as T /. 0 0 .  

0 0 

Hence using dominated convergence together  with the  convergence r e s u l t s  of 

Section 3 we have 

.. - 

For a s ta t ionary  normal Markov process, i . e .  r (7)  = e-a17t  f o r  some pos i t ive  

a, we obtain a = (CZj)-l so t h a t  (5.4.2) becomes fo r  n = 1 
j 

(5.4.3) 

For non-integrable covariance functions the  r e s u l t s  can be very simple in -  

deed. For example i f ,  

then 

- A l o g T  , a s T / o o .  

r m  Further  f o r  m >  1, 

the  f i r s t  term of the  variance formula of (5.2.8) dominates and 

(1--)r (7)d-r converges t o  a f i n i t e  l i m i t  a s  T --3 00 and so T 
0 

(5.4.4) 

TO obtain numerical r e s u l t s  for t he  var ious in t e rga l s  and i n f i n i t e  series 

occuring i n  t h i s  chapter the following remarks can be useful .  
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00 m I n t e g r a l s  of the  form 1 

a 
(x-a) @(x)dx where m i s  an in t ege r  appear both i n  

As noted previously these may &{Zn? and i n  the  f i n i t e  sum involved i n  Var(Zn). 

evaluated using the  binomial theorem and incomplete gamma functions,  v i z .  

m 
where r(m,x) = 1 

are extensively tabled i n  Pearson (1957). 

tm" e-t d t  is an incomplete gamma function. These functions 
X 

The recurrence r e l a t i o n  

may a l s o  be of use. 

increases  by ha l f  integers  so t h a t  two such recurrence equations and two i n i t i a l  

values a r e  necessary t o  obtain a l l  the  terms i n  the sum. The i n i t i a l  values may 

e a s i l y  be found using only standard normal d i s t r i b u t i o n  tab les  since 

Unfortunately, however, the  f i r s t  argument of I' i n  (5.4.5) 

' r ( t , b 2 )  = E ~ - N ~ ) I  

I n  approximating series of the form 

i t  i s  useful  t o  note 

which may be derived by p a r t i a l  integrat ion o r  from known r e s u l t s  f o r  Hermite 

polynomials. 

As an example, f o r  the  Markov case, r (7)  = e - a ' T 1 ,  and p a r t i c u l a r  values of 

n,  a, and oli: (a is only a sca le  parameter on the time axis) the following numerical 

r e s u l t s  were obtained. 



Table 5 .4 .1  Numerical Results 

a = 1, CZ = 2, r(?) = e -ab I 

n &{Zn} Var{Zn] Chebyshev bound 

0 .1587 .04721 .65 

1 .0833 .02850 .80 

2 .0641 .04799 .92 

3 .0912 .13270 .94 

The best bound i s  obtained for n = 0 and we have 

P(X(t) < 1, 0 5 t 5 2 / d  5 .65 . 



CHAPTER VI 

TWO-SIDED BARRIERS 

6.1 Introduction. 

As noted in Chapter I most of the results of Chapters I1 - V can be extended 
to the case of two-sided barriers; that is, where we are interested in excursions 

outside both a (positive) level a and a (negative) level b. The mean of the total 

number of crossings of the level a and the level b is of course trivial to obtain; 

the results will be stated in Section 2. The derivation of the variance or second 

moment of the number of such crossings reduces to the calculation of the covariance 

between the number of crossings of the level a with the number of crossings of the 

level b. 

the proof is given in Section 3. A heuristic derivation of this covariance was 

given previously by Miller and Freund (1956). Finally the extension of the re- 

sults on 2 

Two extensions are considered. (cf. Leadbetter (1963)). 

The methods of Chapter IV may be adapted to obtain this and a sketch of 

exceedance measures (as given in Chapter v) is discussed in Section 4. n 

b Let Na and N denote, respectively, the number of crossings of the level a 

and the level b for 0 5 t 2 1 and let NaSb be the number of crossings of either 
level, i.e., e9b = + Nb. Then is a two-sided barrier version of the 

number of crossings of a single level. 

sider, say, the number of upcrossings of the level a plus the number of downcross- 

ings of the level b. 

a(t), b(t). 

cases. 

In some contexts one might want to con- 

Further we could obviously consider crossings of two curves 

To conserve notation we will give explicit results only for certain 

The corresponding formulae for other situations will be similar. 

6.2 Mean Number of Crossings. 

Suppose X(t) is a non-stationary normal process with mean e(X(t))= m(t) and 
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covariance Cov[x(t),X(s)] = i’(t,s). 

have immediately 

Then with the  nota t ion  of Theorem 3.3.1 we 

Theorem 6.2.1: I f  the conditions of Theorem 3.3.1 hold,  then 

(6.2.1) e{#’b) = e(#) + E{Nb) 

where &(e> and &(Nb] a r e  given by (3.3.1) with m(t) replaced by m ( t ) - a  and by 

m ( t )  -b, respect ively.  

Corol lary 6.2.1: I f  X ( t )  i s  s ta t ionary  with mean zero and covariance r (? ) ,  then 

(6.2.2) e(Na,-al = 

6.3 The Variance. 

To obtain the  variance o r  mean 

~ [ - r ~ ~ ( ~ ) / r ( ~ ) ] ’  e -a2/ [2r(0) I 
a 

b 
square of flYb = N” + N c l e a r l y  we need only 

b der ive a formula f o r  &{@N 1, 

number of crossings of the  l e v e l  a and the  number of crossings of the l eve l  b. 

I n  order t o  have a d i r e c t  analogy with the  der ivat ions of Chapter I V  we consider 

b only upcrossings and write = @ + N i n  an  obvious notat ion.  The proof of 

i . e . ,  the  (uncorrected) covariance between t h e  

U u u  

t h e  following main r e s u l t  

Theorem 6.3.1: Under the  

&{e Nb> u u  (6.3.1) 

w i l l  be given by means of severa l  lemmas. 

conditions of Theorem 4.2.1 we have the  f i n i t e  moment 

l l 0 0 0 0  

h e r e  p (u,v,x,y) i s  the  j o i n t  density of X(O), X(?), X’(O), X’(T) as before. 
? 

b 
Throughout t he  following lemmas < and Nn w i l l  denote t h e  number of upcross- 

i n g s  of the  levels a and b y  respectively,  by t h e  l i n e a r  process Yn( t )  defined i n  

Chapters I1 and 111. W e  use notat ion from Chapter I V  without fur ther  comment. 

- Lemma 6.3.1: For a # b we have 

(6.3.2) N”, Nn b = P + Q + l i m  1 sm[Yn(t)-a] Gm[Yn(s)-b] u[Y‘,(t)] a[<(s)]dsdt 
-00 sn 
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and 

where P denotes the number of intervals (k2'n, (k+1)2-") of ( 0 , l )  which contain 

both an upcrossing of a and an upcrossing of b by Y (t) and Q denotes the numbers 

of such subintervals which contain an upcrossing of a and such that there is an 

upcrossing of b in an adjacent such interval. 

n 

Proof: Write 4~ = k2-". Then as in the proof of Leumas 4.2.1 and 4.2.2 we have 

As in previous work we see that the first term on the right-hand side is just P. 

Similarly the second term is Q. 

Lemma 4.2.2. 

The inequality (6 .3 .3)  is analogous to that of 

To show that E{P) tends to zero as n OD we appeal to the theory of 

"streams of events" or "point processes" as given, for example, in the book of 

A.  Y. Khintchine (1960). In our particular case we say that an event takes place 

at time T if X(t) has either an upcrossing of the level a or an upcrossing of the 

level b at time T. 

integers m 1, m2,. . . , % and any set of disjoint intervals (T 

the joint probability of mi events in the interval ( T  +T, T;+T) is the same for 

every T. 

A stream is called stationary if for any set of non-negative 

T!), i = l,...,k i' 1 

i 

For a stationary stream let U(T) be the probability of at least two 
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events in an interval of length T. 

if U(T) = O(T) as T -j 0. 

orderly are that the mean number of events per unit time be finite and that there 

be zero probability of the simultaneous occurrence of two events anywhere in the 

interval (0,l). 

tension of a lema of Dobrushin given by Volkonski (1960) .  

Then the stream is called orderly (or regular) 

Sufficient conditions for a stationary stream to be 

As pointed out by Leadbetter (1966b), this follows from an ex- 

For the particular stream under consideration, the simultaneous occurrence of 

two events is impossible (with probability one) since a # b and the sample funct- 

ions are continuous (recall that from our definition,points of inflection are 

counted as only one crossing). 

per unit time is finite. 

for the number of upcrossings of a or b in (T~,T~). 

Further since X2 < 00 the mean number of events 

To show that the stream is stationary we write N(T~'T;) 

By dividing each interval 
n 

( T ~ ~ T ~ )  into 2 + 1 equal parts we may define a linear process P (t) on each and n 
thus obtain N (T~,T;) the number of upcrossings of a or b by Y (t) in (T 7 ; ) .  n n i' 
From kmna 2.2.2 we have that, with probability one, N ( 7  

7;)  n i' N(T~,T~) as 

n a, (i=1,2, ... k). Thus the joint distribution converges, i.e. we have 

P{N('ri+T, T~+T) = mi, i=l, ... k) = lim 
e a ,  

P{Nn(Ti+T, T;+T) = mi' i=ly. ..k] . 

Now the probability on the right-hand side can be written as a certain integral 

of a finite-dimentional normal density. The range of integration does not depend 

on T and, since the process X(t) is stationary, the density does not depend on T. 

Hence the left-hand side does not depend 011 T and the stream of events is station- 

ary. 

Thus we may state that the probability of two or more events in an interval 

ao. of length 2-" is 0(2-~) as n 

Now consider the original problem. Assume with no loss of generality that 

b < a. Then 
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2"-1 
fXP? = C P(X(k2-") < b < a < ~ ( ( ~ 1 ) 2 - ~ ) )  

k=O 

2n-l 
2 C P{two events occur i n  (k2'n, (H1)2-")) 

k=O 

n 
= 2 P{two events occur i n  (k2-", ( l ~ + l ) 2 - ~ ) )  

= o(1) , as n 00 . 

Theref ore  

&{PI = o(1) , as n 00 . 
Further 

k = O  

2*-2 
2 C P { X ( ~ C ~ ' ~ )  < b < a < X((H2)2-")) 

k=O 

Hence 

e{Q? = o(1) a lso .  

Thus using inequa l i ty  (6.3.3),  dominated convergence and Fubini's theorem we 

have 

Lemma 6.3.2: As n OD - 

+ 0 0 )  . 
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Proof of the Theorem: Exactly as in Lemma 4 . 2 . 6  we now find 

( 6 . 3 . 6 )  

as usual. 

To show that we may take the limit as n -3 00 under the integrations we pro- 

ceed as in Lemmas 4 .2 .7  - 10 (we need only replace (a,a) by (a,b), essentially). 

In this way we find 

and retracing steps ( 6 . 3 . 6 ) ,  (6.3.5), and ( 6 . 3 . 4 )  completes the proof. 

6 . 4  Exceedance Measures for Two-sided Barriers. 

In Chapter V we considered certain random variables Zn which in a sense 

measured the extent to which the process X(t) exceeded the barrier a(t). 

many contexts it is perhaps more realistic to consider exceedances both above a(t) 

and below b(t), say - that is, a two-sided barrier. 

In 

We assume, as in Chapter V, that X(t) is a stationary normal process with 

We further mean zero, covariance function t( 'r),  normalized so that r(0) = 1. 

assume that Ir(T)I < 1 a.e. and that, with probability one, X(t) has everywhere 

continuous sample functions. 

To simplify many of the formulae we further restrict attention to the case 

where a(t) a, a constant, and b(t) 3 -a. The more general situation can be 
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handled in the same manner but the formulae do not simplify. 

For each non-negative integer n we now define 

if x 2 a  
if x -a 
otherwise 

and then let 
T 1 

(6.4.1) wn = - J g,[X(t)ldt . 
T O  

The quantity W is the proportion of time for which the process is either 
0 

above a or below -a and TW 

area below -a. 

is the total area which X(t) cuts off above a plus the 1 

From symmetry considerations we inmediately have 

(6.4.2) 

To obtain the variance of W we need now consider Cov{gn[X(t)], %[X(s)]). n 
We have 

a a  -a, a -00 -00 

m a ,  oom 
= 2[./ I (x-a)"(y-a)" 6(x,y;r)dxdy + I .f (x-a)n(y-a)n +(x,y;-r)dxdy] 

a a  a a  

where, as previously, @(x,y;r) is the standardized bivariate normal density with 

correlation coefficient r. In our case r = r(t-s). 
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Hence we can use the expansion (5.2.5) again but this time half of the result- 

ing terms w i l l  cancel and we are led to the following result. 

If n is even (the first sum does not appear if n = 0) 

( 6 . 4 . 3 )  

and if n is odd (the first sum does not appear if n = 1) 

( 6 . 4 . 4 )  

In defining g (x) as we have we are treating positive and negative excursions n 

outside the bounds a, -a as being equally "bad" from a performance point-of -view. 

However in other situations it map be that negative excursions can in fact com- 

pensate for positive excursions. In such a case we can define e ( ~ ) ,  say, as n 

i f x r a  , 
n if x 5 -a , 

otherwise . 

We then let 
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The quantities W and W may be easily interpreted. W represents the dif- 
0 1 0 

ference between the proportion of time during (0,T) for which X(t) 2 a and the 

proportion of time for which X(t) 5 -a. Similarly 9 is the difference between 
the area which the process cuts off above a and the corresponding area below -a. 

By the definition of g*(x) we clearly have n 

(6.4.5) ecq' = 0 ,  

and proceeding exactly as for g (x) we obtain the following expression for the 

variance. 
n 

If n is even (the first sum does not appear if n = 0) 

(6.4.6) 

and if n is odd 
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APPENDIX 

l -  

Lemma A.l: 

X'(t) existing and with spectral distribution function F(X), i.e., 

Let X(t) be a stationary normal process with quadratic mean derivative 

(D 

cov[X(t),X(t+~)] = ,f COSXT dF(X) . 
0 

Let tlYt2, ... ,tk be distinct time points. Then if F(A) has a continuous component 

is non-singular. 

Proof: See Cramgr and Leadbetter (1965). 

Le- A.2: If 5 = (x ly...,xn), 

an m x m symmetric positive definite matrix, then 

= (~&~~...,y~) are real row vectors and A is 

- 

where A is the m-r? x r?.-n rnatrix obtained by partitioning A = corre - 3 

sponding to the dimensions o f  2 and x- 

Proof: Let A-' be 

Setting this equal 

d2 We note that - &dzl 
sures that we have 

partitioned similarly as 

d -1 ,E(x,x)A (5,x)'I = 2Pllz' + 2P2p' . - 

t o  the zero vector and solving for 5' yields 

-1 
1 2  

x' = -P P 1' . - 

I 
[(r,~)A-l(x,~)] = 2P2 which is positive definite and thus en- 

found a minimum. 
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The minimum value is 

-1 which gives the f i n a l  r e s u l t  s ince  P -P'P-'P = A ; see Anderson (1958), f o r  3 2 1 2  3 

examp 1 e. 

Lemma A.3: For ( P I  < 1 

m a ,  I xy exp[-%(x2+2pxpCy2)]dxdy = (1-p 2 -1 [l-Acot-lA] , 
0 0  

where 

-1 A = p(l-p2)-# and 0 5 c o t  A 2  ?I . 

2 2 W C D  
Proof: L e t  I(e) = I I exp[ -~ (x f2cos&y+y  )]dxdy . 

0 0  

I f  we make the  transformation x = U+y, y = u-v and then change t o  polar coordinates 

we f ind  

Different ia t ing both s ides  with respect t o  8 y i e l d s  

2 2 m a 3  
s i n e  I I xy exp[-%(x +2cosBxpcy )]dxdy = cscO(l-8cote) 

0 0  

or  

2 2 2 a 3 0  
I xy exp[-#(x +2cos€kyty )]dxdy = csc e(1-ecote) . 
0 0  

Now put cos@ = p. Using ( f o r  principal values) 

-1 -1 2 -# -1 2 -.fi cos p = csc r(1-p ) ] = co t  [ p ( l - p  ) ] 

we ob ta in  t h e  desired r e s u l t .  

. 


